共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
口蹄疫病毒3D蛋白在体外的表达纯化及二级结构分析 总被引:1,自引:0,他引:1
口蹄疫(FMD)是严重影响全球农业经济的高度传染的毁灭性的疫病.3D蛋白是口蹄疫病毒(FMDV)编码的RNA聚合酶,参与病毒RNA的复制.利用PCR扩增得到了FMDV的3D基因片段,然后将其克隆到原核表达质粒pET-28a(+)上,构建重组表达质粒pETFM3D.转化宿主菌BL21(DE3)后,利用1 mmol/L的IPTG进行诱导表达.SDS-PAGE和Western boltting分析结果表明,得到了稳定、过量表达的可溶性的3D蛋白质.目的蛋白质经NI亲和层析柱一步纯化就达到95%,再经Q-sepharose柱纯化后达到97%.通过圆二(CD)色谱测定和计算3D蛋白质在不同的pH(2、4、6、8和10)和不同的温度下(25~85℃)的二级结构.上述结果表明,表达的可溶性3D蛋白质具有高表达、易纯化和稳定性好等特点. 相似文献
11.
In the last 5 years a role for β‐catenin in the skeleton has been cemented. Beginning with mutations in the Lrp5 receptor that control β‐catenin canonical downstream signals, and progressing to transgenic models with bone‐specific alteration of β‐catenin, research has shown that β‐catenin is required for normal bone development. A cell critical to bone in which β‐catenin activity determines function is the marrow‐derived mesenchymal stem cell (MSC), where sustained β‐catenin prevents its distribution into adipogenic lineage. β‐Catenin actions are less well understood in mature osteoblasts: while β‐catenin contributes to control of osteoclastic bone resorption via alteration of the osteoprotegerin/RANKL ratio, a specific regulatory role during osteoblast bone synthesis has not yet been determined. The proven ability of mechanical factors to prevent β‐catenin degradation and induce nuclear translocation through Lrp‐independent mechanisms suggests processes by which exercise might modulate bone mass via control of lineage allocation, in particular, by preventing precursor distribution into the adipocyte pool. Effects resulting from mechanical activation of β‐catenin in mature osteoblasts and osteocytes likely modulate bone resorption, but whether β‐catenin is involved in osteoblast synthetic function remains to be proven for both mechanical and soluble mediators. As β‐catenin appears to support the downstream effects of multiple osteogenic factors, studies clarifying when and where β‐catenin effects occur will be relevant for translational approaches aimed at preventing bone loss and terminal adipogenic conversion. J. Cell. Biochem. 110: 545–553, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
12.
13.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol. 相似文献
14.
目的:明确先天性巨结肠患者携带的5 个基因错义突变对Semaphorin 3(Sema3)蛋白自身稳定性和受
体亲合力的影响作用。方法:构建Sema3-Neuropilin-Plexin 配体-受体复合物蛋白质模型,对全部5个错义突变进行定位,通过计
算标准能量功能赋值(驻驻G)和复合物界面值(驻I_sc)预测突变对Sema3 的影响作用。将野生型和突变型AP-tagged Sema3 质粒分
别转染HEK293T 细胞,72 h后收集含有融合蛋白的细胞培养液上清并与分别表达Neuropilin 1(Nrp-1)或Neuropilin 2(Nrp-2)的
COS-7 细胞孵育,洗脱未结合的蛋白后加入碱性磷酸酶底物显色拍片,或提取细胞总蛋白,利用融合蛋白N- 末端含有的碱性磷
酸酶在底物PNPP 存在时可以发生颜色变化的特性,对与受体结合的野生型和突变型AP-Sema3 蛋白进行定量。结果:5 个错义突
变中的4 个都会不同程度地影响相应Semaphorin 3蛋白与其受体Neuropilin 的结合(与Nrp-1 的结合:SEMA3C S329G,V337M,
SEMA3D H424Q,V457I,P615T 分别与野生型相比:1.12± 0.15,0.37± 0.03,0.56± 0.07,0.51± 0.05,0.66± 0.05;与Nrp-2 的结合:
SEMA3C S329G,V337M,SEMA3D H424Q,V457I,P615T 分别与野生型相比:1.18 ± 0.09,0.37 ± 0.03,0.76 ± 0.01,0.65 ±
0.06,0.85± 0.03,n=3,单因素方差分析,差异有统计学意义),说明它们可能通过严重影响分子通路的信号转导而妨碍蛋白功能的
正常行使。结论:先天性巨结肠患者携带的基因错义突变可不同程度影响蛋白与其受体的结合,提示
Semaphorin 3这类经典的神经元轴突导向因子在功能失常的情况下可能参与先天性巨结肠的发生。 相似文献
15.
Pei Zhi Cheryl Chia Wei Hong Toh Robyn Sharples Isabelle Gasnereau Andrew F. Hill Paul A. Gleeson 《Traffic (Copenhagen, Denmark)》2013,14(9):997-1013
β‐Secretase (BACE1) cleavage of the amyloid precursor protein (APP) represents the initial step in the formation of the Alzheimer's disease associated amyloidogenic Aβ peptide. Substantive evidence indicates that APP processing by BACE1 is dependent on intracellular sorting of this enzyme. Nonetheless, knowledge of the intracellular trafficking pathway of internalised BACE1 remains in doubt. Here we show that cell surface BACE1 is rapidly internalised by the AP2/clathrin dependent pathway in transfected cells and traffics to early endosomes and Rab11‐positive, juxtanuclear recycling endosomes, with very little transported to the TGN as has been previously suggested. Moreover, BACE1 is predominantly localised to the early and recycling endosome compartments in different cell types, including neuronal cells. In contrast, the majority of internalised wild‐type APP traffics to late endosomes/lysosomes. To explore the relevance of the itinerary of BACE1 on APP processing, we generated a BACE1 chimera containing the cytoplasmic tail of TGN38 (BACE/TGN38), which cycles between the cell surface and TGN in an AP2‐dependent manner. Wild‐type BACE1 is less efficient in Aβ production than the BACE/TGN38 chimera, highlighting the relevance of the itinerary of BACE1 on APP processing. Overall the data suggests that internalised BACE1 and APP diverge at early endosomes and that Aβ biogenesis is regulated in part by the recycling itinerary of BACE1. 相似文献
16.
17.
Moira Van Auken Denise Buckley Rahul Ray Michael F. Holick Daniel T. Baran 《Journal of cellular biochemistry》1996,63(3):302-310
The actions of the hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], are mediated by both genomic and nongenomic mechanisms. Several vitamin D synthetic analogs have been developed in order to identify and characterize the site(s) of action of 1α,25-(OH)2D3 in many cell types including osteoblastic cells. We have compared the effects of 1α,25-(OH)2D3 and a novel 1α,25-(OH)2D3 bromoester analog (1,25-(OH)2-BE) that covalently binds to vitamin D receptors. Rat osteosarcoma cells that possess (ROS 17/2.8) or lack (ROS 24/1) the classic intracellular vitamin D receptor were studied to investigate genomic and nongenomic actions. In ROS 17/2.8 cells plated at low density, the two vitamin D compounds (1 × 10−8 M) caused increased cell proliferation, as assessed by DNA synthesis and total cell counts. Northern blot analysis revealed that the mitogenic effect of both agents was accompanied by an increase in steady-state osteocalcin mRNA levels, but neither agent altered alkaline phosphatase mRNA levels in ROS 17/2.8 cells. ROS 17/2.8 cells responded to 1,25-(OH)2-BE but not the natural ligand with a significant increase in osteocalcin secretion after 72, 96, 120, and 144 hr of treatment. Treatment of ROS 17/2.8 cells with the bromoester analog also resulted in a significant decrease in alkaline phosphatase-specific activity. To compare the nongenomic effects of 1α,25-(OH)2D3 and 1,25-(OH)2-BE, intracellular calcium was measured in ROS 24/1 cells loaded with the fluorescent calcium indicator Quin 2. At 2 × 10−8 M, both 1α,25-(OH)2D3 and 1,25-(OH)2-BE increased intracellular calcium within 5 min. Both the genomic and nongenomic actions of 1,25-(OH)2-BE are similar to those of 1α,25-(OH)2D3, and since 1,25-(OH)2-BE has more potent effects on osteoblast function than the naturally occurring ligand due to more stable binding, this novel vitamin D analog may be useful in elucidating the structure and function of cellular vitamin D receptors. © 1996 Wiley-Liss, Inc. 相似文献
18.
Phosphoinositide 3‐kinase gamma (PI3Kγ) draws an increasing attention due to its link with deadly cancer, chronic inflammation and allergy. But the development of PI3Kγ selective inhibitors is still a challenging endeavor because of the high sequence homology with the other PI3K isoforms. In order to acquire valuable information about the interaction mechanism between potent inhibitors and PI3Kγ, a series of PI3Kγ isoform‐selective inhibitors were analyzed by a systematic computational method, combining 3D‐QSAR, molecular docking, molecular dynamic (MD) simulations, free energy calculations and decomposition. The general structure–activity relationships were revealed and some key residues relating to selectivity and high activity were highlighted. It provides precious guidance for rational virtual screening, modification and design of selective PI3Kγ inhibitors. Finally, ten novel inhibitors were optimized and P10 showed satisfactory predicted bioactivity, demonstrating the feasibility to develop potent PI3Kγ inhibitors through this computational modeling and optimization. 相似文献
19.
基质蛋白3(matrin 3, MATR3)是细胞核基质蛋白重要成员之一,它与细胞的基因转录调节、mRNA前体剪接和稳定性、DNA损伤修复以及细胞增殖等活动密切相关。近年来的研究表明, MATR3在逆转录病毒的复制过程中也有着重要作用。鉴于MATR3参与病毒复制的作用机制研究少有报道,该文主要从MATR3的结构特征、在细胞核中的功能、参与病毒复制的作用机制等方面进行综述,以期为深入研究MATR3在病毒生活史中的作用提供参考。 相似文献
20.
S. Klapheck B. Chrost J. Starke H. Zimmermann 《Plant biology (Stuttgart, Germany)》1992,105(3):174-179
In addition to glutathione (γ-GluCysGly), many species of the family Poaceae have another tripeptide which has the amino acid sequence γ-GluCysSer. This thiol was isolated from etiolated leaves of wheat (Triticum aestivum L. cv. Star). Its structure was elucidated by quantitative amino acid analysis after total hydrolysis and by partial hydrolysis with carboxypeptidase A and γ-glutamyltranspeptidase. The content of γ-GluCysSer in the leaves of T. aestivum is increased by incubation with sulfate and is severely diminished by incubation with buthionine sulfoximine, a specific inhibitor of γ-glutamylcysteine synthetase. Oxidized γ-GluCysSer is reduced by yeast glutathione reductase with a rate somewhat lower than for glutathione, but the new tripeptide is not a substrate of glutathione-S-transferase from equine liver. Besides homoglutathione (γ-GluCysßAla), a tripeptide found in plants of the order Fabales, the tripeptide γ-GluCysSer is the second homologue of glutathione detected in plants. 相似文献