共查询到20条相似文献,搜索用时 0 毫秒
1.
Józefa Węsierska‐Gądek Matthias Mauritz Goran Mitulovic Maria Cupo 《Journal of cellular biochemistry》2015,116(12):2824-2839
2.
3.
4.
5.
6.
Gisela Di Giusto Pilar Flamenco Valeria Rivarola Juan Fernández Luciana Melamud Paula Ford Claudia Capurro 《Journal of cellular biochemistry》2012,113(12):3721-3729
We have previously demonstrated that in renal cortical collecting duct cells (RCCD1) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT‐RCCD1 (not expressing aquaporins) and AQP2‐RCCD1 (transfected with AQP2). Our results showed that when most RCCD1 cells are in the G1‐phase (unsynchronized), the blockage of barium‐sensitive K+ channels implicated in rapid RVD inhibits cell proliferation only in AQP2‐RCCD1 cells. Though cells in the S‐phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down‐regulation in the rapid RVD response only in AQP2‐RCCD1 cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2—besides increasing water permeability—would play some other role. These observations together with evidence implying a cell‐sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G1, volume tends to increase but it may be efficiently regulated by an AQP2‐dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down‐regulated when volume needs to be increased in order to proceed into the S‐phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2. J. Cell. Biochem. 113: 3721–3729, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
7.
8.
9.
Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis. 相似文献
11.
Payal Agarwal Maninder Sandey Patricia DeInnocentes R. Curtis Bird 《Journal of cellular biochemistry》2013,114(6):1355-1363
p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16‐defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16‐transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re‐feeding to induce cell cycle re‐entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16‐associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re‐entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by 3H‐thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16‐transfected CMT27A and CMT27H cells exited cell cycle post‐serum‐starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post‐serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non‐proliferative states. J. Cell. Biochem. 114: 1355–1363, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
12.
Casanova F Quarti J da Costa DC Ramos CA da Silva JL Fialho E 《Journal of cellular biochemistry》2012,113(8):2586-2596
Melphalan (MEL) is a chemotherapeutic agent used in breast cancer therapy; however, MEL's side effects limit its clinical applications. In the last 20 years, resveratrol (RSV), a polyphenol found in grape skins, has been proposed to reduce the risk of cancer development. The aim of this study was to investigate whether RSV would be able to enhance the antitumor effects of MEL in MCF-7 and MDA-MB-231 cells. RSV potentiated the cytotoxic effects of MEL in human breast cancer cells. This finding was related to the ability of RSV to sensitize MCF-7 cells to MEL-induced apoptosis. The sensitization by RSV involved the enhancement of p53 levels, the decrease of procaspase 8 and the activation of caspases 7 and 9. Another proposed mechanism for the chemosensitization effect of MCF-7 cells to MEL by RSV was the cell cycle arrest in the S phase. The treatment with RSV or MEL increased the levels of p-Chk2. The increase became pronounced in the combined treatments of the compounds. The expression of cyclin A was decreased by treatment with RSV and by the combination of RSV with MEL. While the levels of cyclin dependent kinase 2 (CDK2) remained unchanged by treatments, its active form (Thr(160) -phosphorylated CDK2) was decreased by treatment with RSV and by the combination of RSV with MEL. The activity of CDK7, kinase that phosphorylates CDK2 at Thr(160), was inhibited by RSV and by the combination of RSV with MEL. These results indicate that RSV could be used as an adjuvant agent during breast cancer therapy with MEL. 相似文献
13.
14.
15.
Yanxia Chu Yunwei Ouyang Fei Wang Ai Zheng Liping Bai Ling Han Yali Chen Hui Wang 《Journal of cellular biochemistry》2014,115(5):847-853
16.
Chia‐Yih Wang Yu‐Han Hong Jhih‐Siang Syu Yung‐Chieh Tsai Xiu‐Ying Liu Ting‐Yu Chen Yin‐Mei Su Pao‐Lin Kuo Yung‐Ming Lin Yen‐Ni Teng 《Journal of cellular biochemistry》2018,119(1):314-326
Leucine‐rich repeats and WD repeat domain containing protein 1 (LRWD1) is a testis‐specific protein that mainly expressed in the sperm neck where centrosome is located. By using microarray analysis, LRWD1 is identified as a putative gene that involved in spermatogenesis. However, its role in human male germ cell development has not been extensively studied. When checking in the semen of patients with asthenozoospermia, teratozoospermia, and asthenoteratozoospermia, the level of LRWD1 in the sperm neck was significantly reduced with a defective neck or tail. When checking the sub‐cellular localization of LRWD1 in the cells, we found that LRWD1 resided in the centrosome and its centrosomal residency was independent of microtubule transportation in NT2/D1, the human testicular embryonic carcinoma, cell line. Depletion of LRWD1 did not induce centrosome re‐duplication but inhibited microtubule nucleation. In addition, the G1 arrest were observed in LRWD1 deficient NT2/D1 cells. Upon LRWD1 depletion, the levels of cyclin E, A, and phosphorylated CDK2, were reduced. Overexpression of LRWD1 promoted cell proliferation in NT2/D1, HeLa, and 239T cell lines. In addition, we also observed that autophagy was activated in LRWD1 deficient cells and inhibition of autophagy by chloroquine or bafilomycin A1 promoted cell death when LRWD1 was depleted. Thus, we found a novel function of LRWD1 in controlling microtubule nucleation and cell cycle progression in the human testicular embryonic carcinoma cells. J. Cell. Biochem. 119: 314–326, 2018. © 2017 Wiley Periodicals, Inc. 相似文献
17.
《Redox report : communications in free radical research》2013,18(4):144-152
AbstractThis study aimed to evaluate the organelle-specific antioxidant/pro-oxidant actions of clinically important dietary antioxidants against oxidative stress. An in vitro cellular model was employed to investigate the antioxidant/pro-oxidant effects of various concentrations (1, 10 and 100 μM) of ascorbic acid, α-tocopherol and β-carotene during H2O2-induced oxidative stress. Damage to nuclear and mitochondrial genomes was analyzed by quantitative polymerase chain reaction and oxidation of membrane lipids was measured via colorimetric assays. The key findings were: (i) dietary antioxidants conferred a dose-dependent protective effect (with a pro-oxidant shift at higher concentrations); (ii) the protection conferred to different sub-cellular organelles is highly specific to the dietary antioxidant; (iii) the mtDNA is highly sensitive to oxidative attack compared to nDNA (P < 0.05); and (iv) mtDNA protection conferred by dietary antioxidants was required to improve protection against oxidative-induced cell death. This study shows that antioxidant-induced protection of mtDNA is an important target for future oxidative stress therapies. 相似文献
18.
Sharov G. Morado D.R. Carroni M. de la Rosa-Trevín J.M. 《Acta Crystallographica. Section D, Structural Biology》2021,77(4):403-410
19.
Anumegha Gupta Meenakshi Tiwari Shilpa Prasad Shail K. Chaube 《Journal of cellular biochemistry》2017,118(3):446-452
20.
Ting‐Yu Chen Jhih‐Siang Syu Tsung‐Yu Han Hui‐ling Cheng Fu‐I Lu Chia‐Yih Wang 《Journal of cellular biochemistry》2015,116(9):2049-2060