首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(6):542-545
Microtubule-associated protein light chain 3 (LC3) is now widely used to monitor autophagy. One approach is to detect LC3 conversion (LC3-I to LC3-II) by immunoblot analysis because the amount of LC3-II is clearly correlated with the number of autophagosomes. However, LC3-II itself is degraded by autophagy, making interpretation of the results of LC3 immunoblotting problematic. Furthermore, the amount of LC3 at a certain time point does not indicate autophagic flux, and therefore, it is important to measure the amount of LC3-II delivered to lysosomes by comparing LC3-II levels in the presence and absence of lysosomal protease inhibitors. Another problem with this method is that LC3-II tends to be much more sensitive to be detected by immunoblotting than LC3-I. Accordingly, simple comparison of LC3-I and LC3-II, or summation of LC3-I and LC3-II for ratio determinations, may not be appropriate, and rather, the amount of LC3-II can be compared between samples.  相似文献   

2.
Little is known about the protein constituents of autophagosome membranes in mammalian cells. Here we demonstrate that the rat microtubule-associated protein 1 light chain 3 (LC3), a homologue of Apg8p essential for autophagy in yeast, is associated to the autophagosome membranes after processing. Two forms of LC3, called LC3-I and -II, were produced post-translationally in various cells. LC3-I is cytosolic, whereas LC3-II is membrane bound. The autophagic vacuole fraction prepared from starved rat liver was enriched with LC3-II. Immunoelectron microscopy on LC3 revealed specific labelling of autophagosome membranes in addition to the cytoplasmic labelling. LC3-II was present both inside and outside of autophagosomes. Mutational analyses suggest that LC3-I is formed by the removal of the C-terminal 22 amino acids from newly synthesized LC3, followed by the conversion of a fraction of LC3-I into LC3-II. The amount of LC3-II is correlated with the extent of autophagosome formation. LC3-II is the first mammalian protein identified that specifically associates with autophagosome membranes.  相似文献   

3.
Use of cooled and frozen semen is becoming increasingly prevalent in the equine industry. However, these procedures cause harmful effects in the sperm cell resulting in reduced cell lifespan and fertility rates. Apoptosis and necrosis-related events are increased during semen cryopreservation. However, a third type of cell death, named autophagy, has not been studied during equine semen storage. Light chain (LC)3 protein is a key component of the autophagy pathway. Under autophagy activation, LC3-I is lipidated and converted to LC3-II. The ratio of LC3-II/LC3-I is widely used as a marker of autophagy activation. The main objective of this study was to investigate whether LC3 is processed during cooling, freezing and the stressful conditions associated with these technologies. A secondary objective was to determine if LC3 processing can be modulated and if that may improve the quality of cryopreserved semen. LC3 processing was studied by Western blot with a specific antibody that recognized both LC3-I and LC3-II. Viability was assessed by flow cytometry. Modulation of LC3-I to LC3-II was studied with known autophagy activators (STF-62247 and rapamycin) or inhibitors (chloroquine and 3-MA) used in somatic cells. The results showed that conversion of LC3-I to LC3-II increased significantly during cooling at 4°C, freezing/thawing and each of the stressful conditions tested (UV radiation, oxidative stress, osmotic stress and changes in temperature). STF-62247 and rapamycin increased the LC3-II/LC3-I ratio and decreased the viability of equine sperm, whereas chloroquine and 3-MA inhibited LC3 processing and maintained the percentage of viable cells after 2 h of incubation at 37°C. Finally, refrigeration at 4°C for 96 h and freezing at −196°C in the presence of chloroquine and 3-MA resulted in higher percentages of viable cells. In conclusion, results showed that an ‘autophagy-like’ mechanism may be involved in the regulation of sperm viability during equine semen cryopreservation. Modulation of autophagy during these reproductive technologies may result in an improvement of semen quality and therefore in higher fertility rates.  相似文献   

4.
The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct from apoptotic bodies and bearing markers of multivesicular bodies (MVB). Nutrient deficiency is also a potent inducer of autophagy and vesicular transport pathways can be assisted by autophagy. Nutrient deficiency induced a significant and rapid increase in autophagic features, as imaged by electron microscopy and immunoblotting analysis of LC3-II/LC3-I ratios. Increased autophagic flux was confirmed by exposing serum-starved cells to bafilomycin A 1. Induction of autophagy was followed by indices of an apoptotic response, as assessed by microscopy and poly (ADP-ribose) polymerase cleavage in absence of cell membrane permeabilization indicative of necrosis. Pan-caspase inhibition with ZVAD-FMK did not prevent the development of autophagy but negatively impacted autophagic vacuole (AV) maturation. Adopting a multidimensional proteomics approach with validation by immunoblotting, we determined that nutrient-deprived EC released AV components (LC3I, LC3-II, ATG16L1 and LAMP2) whereas pan-caspase inhibition with ZVAD-FMK blocked AV release. Similarly, nutrient deprivation in aortic murine EC isolated from CASP3/caspase 3-deficient mice induced an autophagic response in absence of apoptosis and failed to prompt LC3 release. Collectively, the present results demonstrate the release of autophagic components by nutrient-deprived apoptotic human cells in absence of cell membrane permeabilization. These results also identify caspase-3 as a novel regulator of AV release.  相似文献   

5.
《Autophagy》2013,9(6):927-937
The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct from apoptotic bodies and bearing markers of multivesicular bodies (MVB). Nutrient deficiency is also a potent inducer of autophagy and vesicular transport pathways can be assisted by autophagy. Nutrient deficiency induced a significant and rapid increase in autophagic features, as imaged by electron microscopy and immunoblotting analysis of LC3-II/LC3-I ratios. Increased autophagic flux was confirmed by exposing serum-starved cells to bafilomycin A1. Induction of autophagy was followed by indices of an apoptotic response, as assessed by microscopy and poly (ADP-ribose) polymerase cleavage in absence of cell membrane permeabilization indicative of necrosis. Pan-caspase inhibition with ZVAD-FMK did not prevent the development of autophagy but negatively impacted autophagic vacuole (AV) maturation. Adopting a multidimensional proteomics approach with validation by immunoblotting, we determined that nutrient-deprived EC released AV components (LC3I, LC3-II, ATG16L1 and LAMP2) whereas pan-caspase inhibition with ZVAD-FMK blocked AV release. Similarly, nutrient deprivation in aortic murine EC isolated from CASP3/caspase 3-deficient mice induced an autophagic response in absence of apoptosis and failed to prompt LC3 release. Collectively, the present results demonstrate the release of autophagic components by nutrient-deprived apoptotic human cells in absence of cell membrane permeabilization. These results also identify caspase-3 as a novel regulator of AV release.  相似文献   

6.
During autophagy, the microtubule-associated protein light chain 3 (LC3), a specific autophagic marker in mammalian cells, is processed from the cytosolic form (LC3-I) to the membrane-bound form (LC3-II). In HEK293 cells stably expressing FLAG-tagged LC3, activation of protein kinase C inhibited the autophagic processing of LC3-I to LC3-II induced by amino acid starvation or rapamycin. PKC inhibitors dramatically induced LC3 processing and autophagosome formation. Unlike autophagy induced by starvation or rapamycin, PKC inhibitor-induced autophagy was not blocked by the PI-3 kinase inhibitor wortmannin. Using orthophosphate metabolic labeling, we found that LC3 was phosphorylated in response to the PKC activator PMA or the protein phosphatase inhibitor calyculin A. Furthermore, bacterially expressed LC3 was directly phosphorylated by purified PKC in vitro. The sites of phosphorylation were mapped to T6 and T29 by nanoLC-coupled tandem mass spectrometry. Mutations of these residues significantly reduced LC3 phosphorylation by purified PKC in vitro. However, in HEK293 cells stably expressing LC3 with these sites mutated either singly or doubly to Ala, Asp or Glu, autophagy was not significantly affected, suggesting that PKC regulates autophagy through a mechanism independent of LC3 phosphorylation.  相似文献   

7.
目的: 研究黄芪注射液对缺血性心肌病大鼠心肌重塑、网腔钙结合蛋白(calumenin)及自噬影响。方法: 36只雄性SD大鼠分为正常对照组(n=12)、缺血性心肌病组(n=12)、黄芪注射液组(n=12),3组大鼠术前行心电图及心脏彩超检查后,正常对照组不做任何处理,而缺血性心肌病组和黄芪注射液组大鼠开胸结扎冠状动脉20 min后,解开结扎线行再灌注后关闭胸腔建立心肌缺血模型,黄芪注射液组术后每次注射黄芪注射液10 g/kg体重,每周注射1次,共注射4次。3组大鼠术后4周行心脏彩超检查后处死大鼠取心脏行HE染色、VG染色,观察心肌病理改变,用Western blot技术检测各组大鼠心肌细胞calumenin、LC3-I、LC3-II表达变化及LC3-I /LC3-II比值变化。结果: 与缺血性心肌病组比较,黄芪注射液组大鼠心脏彩超及心肌病理得到明显改善;同时,calumenin表达增加LC3-I /LC3-II比值表达降低(P<0.01)。结论: 黄芪注射液对缺血性心肌病大鼠心室重塑及心肌细胞自噬有明显抑制作用,该作用可能是通过calumenin所介导的。  相似文献   

8.
摘要 目的:探讨胱氨酸尿症中高胱氨酸浓度对大鼠肾脏自噬水平的影响。方法:通过液相色谱串联质谱(LC-MS/MS)测定Slc7a9基因敲除大鼠24小时尿液胱氨酸浓度确定高尿胱氨酸;通过IHC(免疫组织化学)染色筛选无结石产生的胱氨酸尿症大鼠、观察肾脏组织结构有无明显变化;通过Western blot测定肾脏组织中的LC3-I、LC3-II、p62和mTOR的蛋白相对表达量,以检测自噬水平的变化,并探索变化原因;通过组织切片Masson染色法检测肾脏髓质纤维化程度。结果:10只无结石胱氨酸尿症大鼠尿液胱氨酸显著高于对照组;未发现有胱氨酸结石的生成与肾脏结构性变化;Masson染色提示胱氨酸尿症大鼠发现轻度肾脏纤维化过程;肾脏组织自噬标记蛋白LC3-I、LC3-II蛋白相对表达量、LC3-II/LC3-I比值以及自噬当量p62相对表达较对照组均显著降低,mTOR相对表达量显著升高。以上差异均有统计学意义(P<0.05)。结论:在胱氨酸尿症大鼠模型上,发现无结石形成情况下的尿高胱氨酸水平可通过mTOR途径抑制大鼠肾脏组织的自噬水平,自我保护作用减弱,由此参与胱氨酸尿症的肾脏损伤过程。  相似文献   

9.
Autophagy is a major intracellular pathway for the degradation and recycling of long-lived proteins, mature ribosomes and even entire organelles. The best studied autophagic marker is the LC3B and it is believed that only the amount of the LC3B-II correlates with the amount of the autophagic membranes. Whether the LC3A processing, aside to LC3B, is a valuable endogenous 'autophagic flux' marker is far less clear. The specificity of rabbit polyclonal antibodies to the LC3A and the LC3B was tested against the commercial available human recombinant proteins LC3A and LC3B. In order to measure 'autophagic flux' in mouse liver, lung, kidney and heart we used: (1) a lysosomotropic reagent chloroquine, which inhibit the intra-lysosomal acidification or their fusion with autophagosome, (2) nutrient starvation as an autophagic stimulus and (3) ionizing radiation, which is known to destabilize lysosomes. According to the immunoblotting work the LC3A protein follows discrete patterns of LC3A-I and LC3A-II changes in liver, lung, kidney and heart tissues of mice, whereas the LC3B protein didn't follow the same pattern under stressor conditions. We conclude that the endogenous LC3A processing is a major marker of autophagy flux in mouse model. Fractionated samples (soluble vs. membrane fractions) should be used in immunoblotting to allow discrimination between the LC3-I soluble and the LC3-II membrane protein and kinetics. Further, when dealing with in vivo models it is necessary to check the specificity of the antibodies used against the LC3A and LC3B proteins as their expression and responsiveness is not overlapping.  相似文献   

10.
Newcastle disease virus (NDV) is an important avian pathogen. We previously reported that NDV triggers autophagy in U251 glioma cells, resulting in enhanced virus replication. In this study, we investigated whether NDV triggers autophagy in chicken cells and tissues to enhance virus replication. We demonstrated that NDV infection induced steady-state autophagy in chicken-derived DF-1 cells and in primary chicken embryo fibroblast (CEF) cells, evident through increased double- or single-membrane vesicles, the accumulation of green fluorescent protein (GFP)-LC3 dots, and the conversion of LC3-I to LC3-II. In addition, we measured autophagic flux by monitoring p62/SQSTM1 degradation, LC3-II turnover, and GFP-LC3 lysosomal delivery and proteolysis, to confirm that NDV infection induced the complete autophagic process. Inhibition of autophagy by pharmacological inhibitors and RNA interference reduced virus replication, indicating an important role for autophagy in NDV infection. Furthermore, we conducted in vivo experiments and observed the conversion of LC3-I to LC3-II in heart, liver, spleen, lung, and kidney of NDV-infected chickens. Regulation of the induction of autophagy with wortmannin, chloroquine, or starvation treatment affects NDV production and pathogenesis in tissues of both lung and intestine; however, treatment with rapamycin, an autophagy inducer of mammalian cells, showed no detectable changes in chicken cells and tissues. Moreover, administration of the autophagy inhibitor wortmannin increased the survival rate of NDV-infected chickens. Our studies provide strong evidence that NDV infection induces autophagy which benefits NDV replication in chicken cells and tissues.  相似文献   

11.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

12.
《Autophagy》2013,9(2):84-91
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D, and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

13.
The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.  相似文献   

14.
The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.  相似文献   

15.
为探究自噬抑制剂6-氨基-3-甲基腺嘌呤(3-methyladenine,3-MA)对损伤细胞氧化应激水平的影响,将3-MA作用于H2O2诱导的PC12细胞损伤模型,以自噬增强剂雷帕霉素(rapamycin,Rap)作为对照,探讨自噬与氧化应激的关系。测定线粒体的膜电位和细胞内的活性氧(reactive oxygen species, ROS)与丙二醛(malondialdehyde, MDA)含量,以及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性,评价损伤细胞的氧化应激状态。单丹(磺)酰戊二胺(monodansylcadaverine,MDC)染色,观察损伤细胞的自噬情况。蛋白质印迹分析损伤细胞中的自噬相关蛋白质LC3-II/LC3-I比值变化。实验结果显示:与正常组相比,H2O2损伤细胞的ROS水平上升到正常组的141%,MDA含量增加(P<0.001);CAT与SOD酶活力显著降低(P<0.001),差异均有统计学意义,证明损伤细胞氧化应激水平增加;MDC染色结果表明,H2O2组自噬明显增加。Western印迹结果表明,LC3-II/LC3-I值显著升高(P<0.05);与损伤组相比,3-MA组MDC染色结果表明,自噬水平降低。Western印迹结果表明,LC3-II/LC3-I值下降;细胞内ROS水平升高,增加到正常组的208%。MDA含量增加(P<0.001),CAT、SOD酶活力降低(P<0.001)。综上结果表明,自噬抑制剂可增加H2O2诱导的PC12细胞损伤模型的氧化应激水平,增加细胞凋亡。  相似文献   

16.
Recent studies have suggested that free fatty acids stimulate autophagy of pancreatic beta cells. The aim of this study was to verify the free fatty acids (FFA)-induced autophagy and investigate its molecular mechanism. As reported previously, palmitate strongly enhanced the conversion of light chain (LC)3-I to LC3-II, a marker of activation of autophagy in INS-1 beta cells. Palmitate-induced conversion of LC3-I to LC3-II was also observed in neuron-, muscle-, and liver-derived cells. In addition, palmitate induced the formation of typical autophagosomes and autolysosomes and enhanced the degradation rate of long-lived proteins. These results confirmed that palmitate activates autophagic flux in most of the cells. While FFAs reportedly activate several signal transduction pathways in beta cells, palmitate-induced autophagy was blocked by a JNK inhibitor. Although enhanced oxidative stress and endoplasmic reticulum (ER) stress are suspected to mediate FFA-induced activation of JNK1, the induction of autophagy was not associated with changes in molecular markers related to oxidative and endoplasmic reticulum stresses. On the other hand, phosphorylation of double stranded RNA-dependent protein kinase (PKR) paralleled JNK1 activation. Considered together, our study suggested that FFA stimulated functional autophagy possibly through the PKR-JNK1 pathway independent of ER or oxidative stress.  相似文献   

17.
Traumatic brain injury (TBI) results in neuronal apoptosis, autophagic cell death and necroptosis. Necroptosis is a newly discovered caspases-independent programmed necrosis pathway which can be triggered by activation of death receptor. Previous works identified that necrostatin-1 (NEC-1), a specific necroptosis inhibitor, could reduce tissue damage and functional impairment through inhibiting of necroptosis process following TBI. However, the role of NEC-1 on apoptosis and autophagy after TBI is still not very clear. In this study, the amount of TBI-induced neural cell deaths were counted by PI labeling method as previously described. The expression of autophagic pathway associated proteins (Beclin-1, LC3-II, and P62) and apoptotic pathway associated proteins (Bcl-2 and caspase-3) were also respectively assessed by immunoblotting. The data showed that mice pretreated with NEC-1 reduced the amount of PI-positive cells from 12 to 48?h after TBI. Immunoblotting results showed that NEC-1 suppressed TBI-induced Beclin-1 and LC3-II activation which maintained p62 at high level. NEC-1 pretreatment also reversed TBI-induced Bcl-2 expression and caspase-3 activation, as well as the ratio of Beclin-1/Bcl-2. Both 3-MA and NEC-1 suppressed TBI-induced caspase-3 activation and LC3-II formation, Z-VAD only inhibited caspase-3 activation but increased LC3-II expression at 24?h post-TBI. All these results revealed that multiple cell death pathways participated in the development of TBI, and NEC-1 inhibited apoptosis and autophagy simultaneously. These coactions may further explain how can NEC-1 reduce TBI-induced tissue damage and functional deficits and reflect the interrelationship among necrosis, apoptosis and autophagy.  相似文献   

18.
Microtubule-associated protein (MAP) light chain 3 (LC3) is a human homologue of yeast Apg8/Aut7/Cvt5 (Atg8), which is essential for autophagy. MAP-LC3 is cleaved by a cysteine protease to produce LC3-I, which is located in cytosolic fraction. LC3-I, in turn, is converted to LC3-II through the actions of E1- and E2-like enzymes. LC3-II is covalently attached to phosphatidylethanolamine on its C terminus, and it binds tightly to autophagosome membranes. We determined the solution structure of LC3-I and found that it is divided into N- and C-terminal subdomains. Additional analysis using a photochemically induced dynamic nuclear polarization technique also showed that the N-terminal subdomain of LC3-I makes contact with the surface of the C-terminal subdomain and that LC3-I adopts a single compact conformation in solution. Moreover, the addition of dodecylphosphocholine into the LC3-I solution induced chemical shift perturbations primarily in the C-terminal subdomain, which implies that the two subdomains have different sensitivities to dodecylphosphocholine micelles. On the other hand, deletion of the N-terminal subdomain abolished binding of tubulin and microtubules. Thus, we showed that two subdomains of the LC3-I structure have distinct functions, suggesting that MAP-LC3 can act as an adaptor protein between microtubules and autophagosomes.  相似文献   

19.
One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.  相似文献   

20.
Macroautophagy/autophagy defects have been identified as critical factors underlying the pathogenesis of neurodegenerative diseases. The roles of the bioactive signaling lipid sphingosine-1-phosphate (S1P) and its catabolic enzyme SGPL1/SPL (sphingosine phosphate lyase 1) in autophagy are increasingly recognized. Here we provide in vitro and in vivo evidence for a previously unidentified route through which SGPL1 modulates autophagy in neurons. SGPL1 cleaves S1P into ethanolamine phosphate, which is directed toward the synthesis of phosphatidylethanolamine (PE) that anchors LC3-I to phagophore membranes in the form of LC3-II. In the brains of SGPL1fl/fl/Nes mice with developmental neural specific SGPL1 ablation, we observed significantly reduced PE levels. Accordingly, alterations in basal and stimulated autophagy involving decreased conversion of LC3-I to LC3-II and increased BECN1/Beclin-1 and SQSTM1/p62 levels were apparent. Alterations were also noticed in downstream events of the autophagic-lysosomal pathway such as increased levels of lysosomal markers and aggregate-prone proteins such as APP (amyloid β [A4] precursor protein) and SNCA/α-synuclein. In vivo profound deficits in cognitive skills were observed. Genetic and pharmacological inhibition of SGPL1 in cultured neurons promoted these alterations, whereas addition of PE was sufficient to restore LC3-I to LC3-II conversion, and control levels of SQSTM1, APP and SNCA. Electron and immunofluorescence microscopy showed accumulation of unclosed phagophore-like structures, reduction of autolysosomes and altered distribution of LC3 in SGPL1fl/fl/Nes brains. Experiments using EGFP-mRFP-LC3 provided further support for blockage of the autophagic flux at initiation stages upon SGPL1 deficiency due to PE paucity. These results emphasize a formerly overlooked direct role of SGPL1 in neuronal autophagy and assume significance in the context that autophagy modulators hold an enormous therapeutic potential in the treatment of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号