首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F-statistics were employed to analyse quantitative and allozyme variation among 19 native populations of maritime pine (Pinus pinaster Ait.). Fourteen polymorphic allozyme loci were used to provide an empirical basis for constructing a null hypothesis to test natural selection as a determinant of quantitative evolution in stem form, total height growth and survival at 30 years old. Hidden biases, that may result in a difference between quantitative (Q(ST)) and allozyme (F(ST)) differentiation which are not because of the action of natural selection, were avoided by comparing pairs of populations using linear models. All quantitative traits showed higher differentiation than allozymes. The highest divergence was found in stem form, whereas divergences in total height and survival were significantly lower. Differential adaptation to regional and local patterns of precipitation, temperature and soil type seem to be the best explanation of the different structure found in quantitative traits and allozyme loci. Possible bias in the estimation of Q(ST) due to the level of quantitative within-population diversity and the role of adaptation of maritime pine after the last glaciation to highly diverse ecological conditions are discussed with special reference to the actual geographical structure of gene diversity in the species' native range.  相似文献   

2.
Goudet J  Büchi L 《Genetics》2006,172(2):1337-1347
To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.  相似文献   

3.
Understanding how landscape heterogeneity mediates the effects of fire on biodiversity is increasingly important under global changes in fire regimes. We used a simulation experiment to investigate how fire regimes interact with topography and weather to shape neutral and selection‐driven genetic diversity under alternative dispersal scenarios, and to explore the conditions under which microrefuges can maintain genetic diversity of populations exposed to recurrent fire. Spatial heterogeneity in simulated fire frequency occurred in topographically complex landscapes, with fire refuges and fire‐prone “hotspots” apparent. Interannual weather variability reduced the effect of topography on fire patterns, with refuges less apparent under high weather variability. Neutral genetic diversity was correlated with long‐term fire frequency under spatially heterogeneous fire regimes, being higher in fire refuges than fire‐prone areas, except under high dispersal or low fire severity (low mortality). This generated different spatial genetic structures in fire‐prone and fire‐refuge components of the landscape, despite similar dispersal. In contrast, genetic diversity was only associated with time since the most recent fire in flat landscapes without predictable refuges and hotspots. Genetic effects of selection driven by fire‐related conditions depended on selection pressure, migration distance and spatial heterogeneity in fire regimes. Allele frequencies at a locus conferring higher fitness under successional environmental conditions followed a pattern of “temporal adaptation” to contemporary conditions under strong selection pressure and high migration. However, selected allele frequencies were correlated with spatial variation in long‐term mean fire frequency (relating to environmental predictability) under weak dispersal, low selection pressure and strong spatial heterogeneity in fire regimes.  相似文献   

4.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

5.
Le Corre V  Kremer A 《Genetics》2003,164(3):1205-1219
Genetic variability in a subdivided population under stabilizing and diversifying selection was investigated at three levels: neutral markers, QTL coding for a trait, and the trait itself. A quantitative model with additive effects was used to link genotypes to phenotypes. No physical linkage was introduced. Using an analytical approach, we compared the diversity within deme (H(S)) and the differentiation (F(ST)) at the QTL with the genetic variance within deme (V(W)) and the differentiation (Q(ST)) for the trait. The difference between F(ST) and Q(ST) was shown to depend on the relative amounts of covariance between QTL within and between demes. Simulations were used to study the effect of selection intensity, variance of optima among demes, and migration rate for an allogamous and predominantly selfing species. Contrasting dynamics of the genetic variability at markers, QTL, and trait were observed as a function of the level of gene flow and diversifying selection. The highest discrepancy among the three levels occurred under highly diversifying selection and high gene flow. Furthermore, diversifying selection might cause substantial heterogeneity among QTL, only a few of them showing allelic differentiation, while the others behave as neutral markers.  相似文献   

6.
The impact of natural selection on the adaptive divergence of invasive populations can be assessed by testing the null hypothesis that the extent of quantitative genetic differentiation (Q(ST) ) would be similar to that of neutral molecular differentiation (F(ST) ). Using eight microsatellite loci and a common garden approach, we compared Q(ST) and F(ST) among ten populations of an invasive species Ambrosia artemisiifolia (common ragweed) in France. In a common garden study with varying water and nutrient levels, we measured Q(ST) for five traits (height, total biomass, reproductive allocation, above- to belowground biomass ratio, and days to flowering). Although low F(ST) indicated weak genetic structure and strong gene flow among populations, we found significant diversifying selection (Q(ST) > F(ST) ) for reproductive allocation that may be closely related to fitness. It suggests that abiotic conditions may have exerted selection pressure on A. artemisiifolia populations to differentiate adaptively, such that populations at higher altitude or latitude evolved greater reproductive allocation. As previous studies indicate multiple introductions from various source populations of A. artemisiifolia in North America, our results suggest that the admixture of introduced populations may have increased genetic diversity and additive genetic variance, and in turn, promoted the rapid evolution and adaptation of this invasive species.  相似文献   

7.
Mimura M  Aitken SN 《Heredity》2007,99(2):224-232
Fossil pollen records suggest rapid migration of tree species in response to Quaternary climate warming. Long-distance dispersal and high gene flow would facilitate rapid migration, but would initially homogenize variation among populations. However, contemporary clinal variation in adaptive traits along environmental gradients shown in many tree species suggests that local adaptation can occur during rapid migration over just a few generations in interglacial periods. In this study, we compared growth performance and pollen genetic structure among populations to investigate how populations of Sitka spruce (Picea sitchensis) have responded to local selection along the historical migration route. The results suggest strong adaptive divergence among populations (average Q(ST)=0.61), corresponding to climatic gradients. The population genetic structure, determined by microsatellite markers (R(ST)=0.09; F(ST)=0.11), was higher than previous estimates from less polymorphic genetic markers. The significant correlation between geographic and pollen haplotype genetic (R(ST)) distances (r=0.73, P<0.01) indicates that the current genetic structure has been shaped by isolation-by-distance, and has developed in relatively few generations. This suggests relatively limited gene flow among populations on a recent timescale. Gene flow from neighboring populations may have provided genetic diversity to founder populations during rapid migration in the early stages of range expansion. Increased genetic diversity subsequently enhanced the efficiency of local selection, limiting gene flow primarily to among similar environments and facilitating the evolution of adaptive clinal variation along environmental gradients.  相似文献   

8.
Microevolutionary responses to spatial variation in the environment seem ubiquitous, but the relative role of selection and neutral processes in driving phenotypic diversification remain often unknown. The moor frog (Rana arvalis) shows strong phenotypic divergence along an acidification gradient in Sweden. We here used correlations among population pairwise estimates of quantitative trait (P(ST) or Q(ST) from common garden estimates of embryonic acid tolerance and larval life-history traits) and neutral genetic divergence (F(ST) from neutral microsatellite markers), as well as environmental differences (pond pH, predator density, and latitude), to test whether this phenotypic divergence is more likely due to divergent selection or neutral processes. We found that trait divergence was more strongly correlated with environmental differences than the neutral marker divergence, suggesting that divergent natural selection has driven phenotypic divergence along the acidification gradient. Moreover, pairwise P(ST) s of embryonic acid tolerance and Q(ST) s of metamorphic size were strongly correlated with breeding pond pH, whereas pairwise Q(ST) s of larval period and growth rate were more strongly correlated with geographic distance/latitude and predator density, respectively. We suggest that incorporating measurements of environmental variation into Q(ST) -F(ST) studies can improve our inferential power about the agents of natural selection in natural populations.  相似文献   

9.
Global environmental change is happening at unprecedented rates. Coral reefs are among the ecosystems most threatened by global change. For wild populations to persist, they must adapt. Knowledge shortfalls about corals' complex ecological and evolutionary dynamics, however, stymie predictions about potential adaptation to future conditions. Here, we review adaptation through the lens of quantitative genetics. We argue that coral adaptation studies can benefit greatly from “wild” quantitative genetic methods, where traits are studied in wild populations undergoing natural selection, genomic relationship matrices can replace breeding experiments, and analyses can be extended to examine genetic constraints among traits. In addition, individuals with advantageous genotypes for anticipated future conditions can be identified. Finally, genomic genotyping supports simultaneous consideration of how genetic diversity is arrayed across geographic and environmental distances, providing greater context for predictions of phenotypic evolution at a metapopulation scale.  相似文献   

10.
Comparisons of estimates of genetic differentiation at molecular markers (F(ST)) and at quantitative traits (Q(ST)) are a means of inferring the level and heterogeneity of selection in natural populations. However, such comparisons are questionable because they require that the influence of drift and selection on Q(ST) be detectable over possible background influences of environmental or nonadditive genetic effects on Q(ST)-values. Here we test this using an experimental evolution approach in metapopulations of Arabidopsis thaliana experiencing different levels of drift and selection heterogeneity. We estimated the intensity and heterogeneity of selection on morphological and phenological traits via selection differentials. We demonstrate that Q(ST)-values increased with increasing selection heterogeneity when genetic drift was limited. The effect of selection on Q(ST) was thus detectable despite significant genotype-by-environment interactions that most probably biased the estimates of genetic differentiation. Although they cannot be used as a direct validation of the conclusions of prior studies, our results strongly support both the relevance of Q(ST) as an estimator of genetic differentiation and the role of local selection in shaping the genetic differentiation of natural populations.  相似文献   

11.

An experimental test of H. S. Jennings’ principle of “selection of overproduced movements” was conducted using a jellyfish (Sarsia tubulosa M. Sars) as the experimental animal. The hypothesis was that behavioural repertoire and diversity (measured as Brillouin's H) would be higher under unfavourable environmental conditions. The results showed no difference in behavioural repertoire and reduced behavioural diversity under unfavourable environmental conditions. The reduction in behavioural diversity was due to lower behavioural evenness under experimental conditions.  相似文献   

12.
Kremer A  Le Corre V 《Heredity》2012,108(4):375-385
We dissected the relationship between genetic differentiation (Q(ST)) for a trait and its underlying genes (G(STq), differentiation for a quantitative locus) in an evolutionary context, with the aim of identifying the conditions in which these two measurements are decoupled. We used two parameters (θ(B) and θ(W)) scaling the contributions of inter- and intrapopulation allelic covariation between genes controlling the trait of interest. We monitored the changes in θ(B) and θ(W), Q(ST) and G(STq) over successive generations of divergent and stabilizing selection, in simulations for an outcrossing species with extensive gene flow. The dynamics of these parameters are characterized by two phases. Initially, during the earliest generations, differentiation of the trait increases very rapidly and the principal and immediate driver of Q(ST) is θ(B). During subsequent generations, G(STq) increases steadily and makes an equal contribution to Q(ST). These results show that selection first captures beneficial allelic associations at different loci at different populations, and then targets changes in allelic frequencies. The same patterns are observed when environmental change modifies divergent selection, as shown by the very rapid response of θ(B) to the changes of selection regimes. We compare our results with previous experimental findings and consider their relevance to the detection of molecular signatures of natural selection.  相似文献   

13.
Patterns of variation in quantitative characters and genetic markers were compared among six regional populations of white spruce [Picea glauca (Moench) Voss]. Although some phenotypic characters were correlated with latitude (r = 0.791), longitude (r = -0.796) and precipitation during the growing season (r = 0.789), variability at genetic markers was not correlated with geographical or bioclimatic variables, and followed neutral expectations. Estimates of genetic diversity and population differentiation for 14 allozymes (translated regions of coding genes) were essentially indistinguishable from those observed for 11 expressed sequence tag polymorphisms (ESTPs) from untranslated regions of coding genes. Variation among populations for quantitative traits such as eighth year height (Q(ST) = 0.082), thirteenth year height (Q(ST) = 0.069), total wood density (Q(ST) = 0.102) and date of budset (Q(ST) = 0.246), was greater than for allozymes (G(ST) = 0.014) and ESTPs (G(ST) = 0.019). These trends suggest a strong adaptive response in quantitative traits, contrasting to allozymes and ESTPs where no selective response could be detected and where populations appeared to be essentially in a migration-drift equilibrium.  相似文献   

14.
López-Fanjul C  Fernández A  Toro MA 《Genetics》2003,164(4):1627-1633
For neutral additive genes, the quantitative index of population divergence (Q(ST)) is equivalent to Wright's fixation index (F(ST)). Thus, divergent or convergent selection is usually invoked, respectively, as a cause of the observed increase (Q(ST) > F(ST)) or decrease (Q(ST) < F(ST)) of Q(ST) from its neutral expectation (Q(ST) = F(ST)). However, neutral nonadditive gene action can mimic the additive expectations under selection. We have studied theoretically the effect of consecutive population bottlenecks on the difference F(ST) - Q(ST) for two neutral biallelic epistatic loci, covering all types of marginal gene action. With simple dominance, Q(ST) < F(ST) for only low to moderate frequencies of the recessive alleles; otherwise, Q(ST) > F(ST). Additional epistasis extends the condition Q(ST) < F(ST) to a broader range of frequencies. Irrespective of the type of nonadditive action, Q(ST) < F(ST) generally implies an increase of both the within-line additive variance after bottlenecks over its ancestral value (V(A)) and the between-line variance over its additive expectation (2F(ST)V(A)). Thus, both the redistribution of the genetic variance after bottlenecks and the F(ST) - Q(ST) value are governed largely by the marginal properties of single loci. The results indicate that the use of the F(ST) - Q(ST) criterion to investigate the relative importance of drift and selection in population differentiation should be restricted to pure additive traits.  相似文献   

15.
Many decades of experimental and theoretical research on the origin of life have yielded important discoveries regarding the chemical and physical conditions under which organic compounds can be synthesized and polymerized. However, such conditions often seem mutually exclusive, because they are rarely encountered in a single environmental setting. As such, no convincing models explain how living cells formed from abiotic constituents. Here, we propose a new approach that considers the origin of life within the global context of the Hadean Earth. We review previous ideas and synthesize them in four central hypotheses: (i) Multiple microenvironments contributed to the building blocks of life, and these niches were not necessarily inhabitable by the first organisms; (ii) Mineral catalysts were the backbone of prebiotic reaction networks that led to modern metabolism; (iii) Multiple local and global transport processes were essential for linking reactions occurring in separate locations; (iv) Global diversity and local selection of reactants and products provided mechanisms for the generation of most of the diverse building blocks necessary for life. We conclude that no single environmental setting can offer enough chemical and physical diversity for life to originate. Instead, any plausible model for the origin of life must acknowledge the geological complexity and diversity of the Hadean Earth. Future research may therefore benefit from identifying further linkages between organic precursors, minerals, and fluids in various environmental contexts.  相似文献   

16.
Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average F ST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.  相似文献   

17.
In plants, ecologically important life history traits often display clinal patterns of population divergence. Such patterns can provide strong evidence for spatially varying selection across environmental gradients but also may result from nonselective processes, such as genetic drift, population bottlenecks and spatially restricted gene flow. Comparison of population differentiation in quantitative traits (measured as Q(ST) ) with neutral molecular markers (measured as F(ST) ) provides a useful tool for understanding the relative importance of adaptive and nonadaptive processes in the formation and maintenance of clinal variation. Here, we demonstrate the existence of geographic variation in key life history traits in the diploid perennial sunflower species Helianthus maximiliani across a broad latitudinal transect in North America. Strong population differentiation was found for days to flowering, growth rate and multiple size-related traits. Differentiation in these traits greatly exceeds neutral predictions, as determined both by partial Mantel tests and by comparisons of global Q(ST) values with theoretical F(ST) distributions. These findings indicate that clinal variation in these life history traits likely results from local adaptation driven by spatially heterogeneous environments.  相似文献   

18.
大别山山核桃种群遗传多样性研究   总被引:4,自引:1,他引:4       下载免费PDF全文
为了更有效地保护和合理开发大别山山核桃(Carya dabieshanensis)资源,该文利用RAPD分子标记技术,对3个天然大别山山核桃种群的90个单株的遗传多样性、种群内和种群间的遗传变异进行了研究,结果表明:20对10 bp随机引物共检测到238条谱带,其中多态带为162条,占68.1%。遗传多样性分析结果显示: Shannon多样性指数为0.476 1,58.18%的变异分布于群体内,而种群间变异占了41.82%;Nei指数群体总基因多样度为0.314 5,群体内平均基因多样度(HS)为0.186 5,群体间的基因多样度(HST)为0.128 0,群体Nei基因分化系数(GST)为0.406 7,说明40.67%的变异存在于种群间,群体内的变异占了总变异的59.33%,与Shannon多样性指数相比基本一致,均表明种群内有较丰富的遗传变异,这为优良品种选育提供广阔前景;种群间的基因流(Nm)为0.730 6,证明种群间遗传交换较小,这与环境适应性和高山阻隔有一定的关系。  相似文献   

19.
Medicago laciniata is restricted to south of the Mediterranean basin and it extends in Tunisia from the inferior semi-arid to Saharan stages, whereas M. truncatula is a widespread species in such areas. The genetic variability in four Tunisian sympatric populations of M. laciniata and M. truncatula was analysed using 19 quantitative traits and 20 microsatellites. We investigated the amplification transferability of 52 microsatellites developed in M. truncatula to M. laciniata. Results indicate that about 78.85% of used markers are valuable genetic markers for M. laciniata. M. laciniata displayed significantly lower quantitative differentiation among populations (QST=0.12) than did M. truncatula (QST=0.45). However, high molecular differentiations, with no significant difference, were observed in M. laciniata (FST=0.48) and M. truncatula (FST=0.47). Several quantitative traits exhibited significantly smaller QST than FST for M. laciniata, consistent with constraining selection. For M. truncatula, the majority of traits displayed no statistical difference in the level of QST and FST. Furthermore, these traits are significantly associated with eco-geographical factors, consistent with selection for local adaptation rather than genetic drift. In both species, there was no significant correlation between genetic variation at quantitative traits and molecular markers. The site-of-origin explains about 5.85% and 11.27% of total quantitative genetic variability among populations of M. laciniata and M. truncatula, respectively. Established correlations between quantitative traits and eco-geographical factors were generally more moderate for M. laciniata than for M. truncatula, suggesting that the two species exhibit different genetic bases of local adaptation to varying environmental conditions. Nevertheless, no consistent patterns of associations were found between gene diversity (He) and environmental factors in either species.  相似文献   

20.
Three measures of divergence, estimated at nine putatively neutral microsatellite markers, 14 quantitative traits, and seven quantitative trait loci (QTL) were compared in eight populations of the three-spined stickleback (Gasterosteus aculeatus L.) living in the Scheldt river basin (Belgium). Lowland estuarine and polder populations were polymorphic for the number of lateral plates, whereas upland freshwater populations were low-plated. The number of short gill rakers and the length of dorsal and pelvic spines gradually declined along a coastal-inland gradient. Plate number, short gill rakers and spine length showed moderate to strong signals of divergent selection between lowland and upland populations in comparison between P(ST) (a phenotypic alternative for Q(ST)) and neutral F(ST). However, such comparisons rely on the unrealistic assumption that phenotypic variance equals additive genetic variance, and that nonadditive genetic effects and environmental effects can be minimized. In order to verify this assumption and to confirm the phenotypic signals of divergence, we tested for divergent selection at the underlying QTL. For plate number, strong genetic evidence for divergent selection between lowland and upland populations was obtained based on an intron marker of the Eda gene, of which the genotype was highly congruent with plate morph. Genetic evidence for divergent selection on short gill rakers was limited to some population pairs where F(ST) at only one of two QTL was detected as an outlier, although F(ST) at both loci correlated significantly with P(ST). No genetic confirmation was obtained for divergent selection on dorsal spine length, as no outlier F(ST)s were detected at dorsal spine QTL, and no significant correlations with P(ST) were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号