首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-throughput proteomics is made possible by a combination of modern mass spectrometry instruments capable of generating many millions of tandem mass (MS(2)) spectra on a daily basis and the increasingly sophisticated associated software for their automated identification. Despite the growing accumulation of collections of identified spectra and the regular generation of MS(2) data from related peptides, the mainstream approach for peptide identification is still the nearly two decades old approach of matching one MS(2) spectrum at a time against a database of protein sequences. Moreover, database search tools overwhelmingly continue to require that users guess in advance a small set of 4-6 post-translational modifications that may be present in their data in order to avoid incurring substantial false positive and negative rates. The spectral networks paradigm for analysis of MS(2) spectra differs from the mainstream database search paradigm in three fundamental ways. First, spectral networks are based on matching spectra against other spectra instead of against protein sequences. Second, spectral networks find spectra from related peptides even before considering their possible identifications. Third, spectral networks determine consensus identifications from sets of spectra from related peptides instead of separately attempting to identify one spectrum at a time. Even though spectral networks algorithms are still in their infancy, they have already delivered the longest and most accurate de novo sequences to date, revealed a new route for the discovery of unexpected post-translational modifications and highly-modified peptides, enabled automated sequencing of cyclic non-ribosomal peptides with unknown amino acids and are now defining a novel approach for mapping the entire molecular output of biological systems that is suitable for analysis with tandem mass spectrometry. Here we review the current state of spectral networks algorithms and discuss possible future directions for automated interpretation of spectra from any class of molecules.  相似文献   

2.
Despite a recent surge of interest in database-independent peptide identifications, accurate de novo peptide sequencing remains an elusive goal. While the recently introduced spectral network approach resulted in accurate peptide sequencing in low-complexity samples, its success depends on the chance of presence of spectra from overlapping peptides. On the other hand, while multistage mass spectrometry (collecting multiple MS 3 spectra from each MS 2 spectrum) can be applied to all spectra in a complex sample, there are currently no software tools for de novo peptide sequencing by multistage mass spectrometry. We describe a rigorous probabilistic framework for analyzing spectra of overlapping peptides and show how to apply it for multistage mass spectrometry. Our software results in both accurate de novo peptide sequencing from multistage mass spectra (despite the inferior quality of MS 3 spectra) and improved interpretation of spectral networks. We further study the problem of de novo peptide sequencing with accurate parent mass (but inaccurate fragment masses), the protocol that may soon become the dominant mode of spectral acquisition. Most existing peptide sequencing algorithms (based on the spectrum graph approach) do not track the accurate parent mass and are thus not equipped for solving this problem. We describe a de novo peptide sequencing algorithm aimed at this experimental protocol and show that it improves the sequencing accuracy on both tandem and multistage mass spectrometry.  相似文献   

3.
Identification of proteins and their modifications via liquid chromatography-tandem mass spectrometry is an important task for the field of proteomics. However, because of the complexity of tandem mass spectra, the majority of the spectra cannot be identified. The presence of unanticipated protein modifications is among the major reasons for the low spectral identification rate. The conventional database search approach to protein identification has inherent difficulties in comprehensive detection of protein modifications. In recent years, increasing efforts have been devoted to developing unrestrictive approaches to modification identification, but they often suffer from their lack of speed. This paper presents a statistical algorithm named DeltAMT (Delta Accurate Mass and Time) for fast detection of abundant protein modifications from tandem mass spectra with high-accuracy precursor masses. The algorithm is based on the fact that the modified and unmodified versions of a peptide are usually present simultaneously in a sample and their spectra are correlated with each other in precursor masses and retention times. By representing each pair of spectra as a delta mass and time vector, bivariate Gaussian mixture models are used to detect modification-related spectral pairs. Unlike previous approaches to unrestrictive modification identification that mainly rely upon the fragment information and the mass dimension in liquid chromatography-tandem mass spectrometry, the proposed algorithm makes the most of precursor information. Thus, it is highly efficient while being accurate and sensitive. On two published data sets, the algorithm effectively detected various modifications and other interesting events, yielding deep insights into the data. Based on these discoveries, the spectral identification rates were significantly increased and many modified peptides were identified.  相似文献   

4.
The SwePep database is designed for endogenous peptides and mass spectrometry. It contains information about the peptides such as mass, pl, precursor protein and potential post-translational modifications. Here, we have improved and extended the SwePep database with tandem mass spectra, by adding a locally curated version of the global proteome machine database (GPMDB). In peptidomic experiment practice, many peptide sequences contain multiple tandem mass spectra with different quality. The new tandem mass spectra database in SwePep enables validation of low quality spectra using high quality tandem mass spectra. The validation is performed by comparing the fragmentation patterns of the two spectra using algorithms for calculating the correlation coefficient between the spectra. The present study is the first step in developing a tandem spectrum database for endogenous peptides that can be used for spectrum-to-spectrum identifications instead of peptide identifications using traditional protein sequence database searches.  相似文献   

5.
MS2 library spectra are rich in reproducible information about peptide fragmentation patterns compared to theoretical spectra modeled by a sequence search tool. So far, spectrum library searches are mostly applied to detect peptides as they are present in the library. However, they also allow finding modified variants of the library peptides if the search is done with a large precursor mass window and an adapted Spectrum-Spectrum Match (SSM) scoring algorithm. We perform a thorough evaluation on the use of library spectra as opposed to theoretical peptide spectra for the identification of PTMs, analyzing spectra of a well-annotated modification-rich test data set compiled from public data repositories. These initial studies motivate the development of our modification tolerant spectrum library search tool QuickMod, designed to identify modified variants of the peptides listed in the spectrum library without any prior input from the user estimating the modifications present in the sample. We built the search algorithm of QuickMod after carefully testing different SSM similarity scores. The final spectrum scoring scheme uses a support vector machine (SVM) on a selection of scoring features to classify correct and incorrect SSM. After identification of a list of modified peptides at a given False Discovery Rate (FDR), the modifications need to be positioned on the peptide sequence. We present a rapid modification site assignment algorithm and evaluate its positioning accuracy. Finally, we demonstrate that QuickMod performs favorably in terms of speed and identification rate when compared to other software solutions for PTM analysis.  相似文献   

6.
MOTIVATION: Tandem mass spectrometry combined with sequence database searching is one of the most powerful tools for protein identification. As thousands of spectra are generated by a mass spectrometer in one hour, the speed of database searching is critical, especially when searching against a large sequence database, or when the peptide is generated by some unknown or non-specific enzyme, even or when the target peptides have post-translational modifications (PTM). In practice, about 70-90% of the spectra have no match in the database. Many believe that a significant portion of them are due to peptides of non-specific digestions by unknown enzymes or amino acid modifications. In another case, scientists may choose to use some non-specific enzymes such as pepsin or thermolysin for proteolysis in proteomic study, in that not all proteins are amenable to be digested by some site-specific enzymes, and furthermore many digested peptides may not fall within the rang of molecular weight suitable for mass spectrometry analysis. Interpreting mass spectra of these kinds will cost a lot of computational time of database search engines. OVERVIEW: The present study was designed to speed up the database searching process for both cases. More specifically speaking, we employed an approach combining suffix tree data structure and spectrum graph. The suffix tree is used to preprocess the protein sequence database, while the spectrum graph is used to preprocess the tandem mass spectrum. We then search the suffix tree against the spectrum graph for candidate peptides. We design an efficient algorithm to compute a matching threshold with some statistical significance level, e.g. p = 0.01, for each spectrum, and use it to select candidate peptides. Then we rank these peptides using a SEQUEST-like scoring function. The algorithms were implemented and tested on experimental data. For post-translational modifications, we allow arbitrary number of any modification to a protein. AVAILABILITY: The executable program and other supplementary materials are available online at: http://hto-c.usc.edu:8000/msms/suffix/.  相似文献   

7.
An important but difficult problem in proteomics is the identification of post-translational modifications (PTMs) in a protein. In general, the process of PTM identification by aligning experimental spectra with theoretical spectra from peptides in a peptide database is very time consuming and may lead to high false positive rate. In this paper, we introduce a new approach that is both efficient and effective for blind PTM identification. Our work consists of the following phases. First, we develop a novel tree decomposition based algorithm that can efficiently generate peptide sequence tags (PSTs) from an extended spectrum graph. Sequence tags are selected from all maximum weighted antisymmetric paths in the graph and their reliabilities are evaluated with a score function. An efficient deterministic finite automaton (DFA) based model is then developed to search a peptide database for candidate peptides by using the generated sequence tags. Finally, a point process model-an efficient blind search approach for PTM identification, is applied to report the correct peptide and PTMs if there are any. Our tests on 2657 experimental tandem mass spectra and 2620 experimental spectra with one artificially added PTM show that, in addition to high efficiency, our ab-initio sequence tag selection algorithm achieves better or comparable accuracy to other approaches. Database search results show that the sequence tags of lengths 3 and 4 filter out more than 98.3% and 99.8% peptides respectively when applied to a yeast peptide database. With the dramatically reduced search space, the point process model achieves significant improvement in accuracy as well. AVAILABILITY: The software is available upon request.  相似文献   

8.
Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for protein characterization in complex samples. The peptide fragmentation spectra generated by these workflows exhibit characteristic fragmentation patterns that can be used to identify the peptide. In other fields, where the compounds of interest do not have the convenient linear structure of peptides, fragmentation spectra are identified by comparing new spectra with libraries of identified spectra, an approach called spectral matching. In contrast to sequence-based tandem mass spectrometry search engines used for peptides, spectral matching can make use of the intensities of fragment peaks in library spectra to assess the quality of a match. We evaluate a hidden Markov model approach (HMMatch) to spectral matching, in which many examples of a peptide's fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak's intensity. We demonstrate that HMMatch has good specificity and superior sensitivity, compared to sequence database search engines such as X!Tandem. HMMatch achieves good results from relatively few training spectra, is fast to train, and can evaluate many spectra per second. A statistical significance model permits HMMatch scores to be compared with each other, and with other peptide identification tools, on a unified scale. HMMatch shows a similar degree of concordance with X!Tandem, Mascot, and NIST's MS Search, as they do with each other, suggesting that each tool can assign peptides to spectra that the others miss. Finally, we show that it is possible to extrapolate HMMatch models beyond a single peptide's training spectra to the spectra of related peptides, expanding the application of spectral matching techniques beyond the set of peptides previously observed.  相似文献   

9.
Post-translational modifications (PTMs) play key roles in the regulation of biological functions of proteins. Although some progress has been made in identifying several PTMs using existing approaches involving a combination of affinity-based enrichment and mass spectrometric analysis, comprehensive identification of PTMs remains a challenging problem in proteomics because of the dynamic complexities of PTMs in vivo and their low abundance. We describe here a strategy for rapid, efficient, and comprehensive identification of PTMs occurring in biological processes in vivo. It involves a selectively excluded mass screening analysis (SEMSA) of unmodified peptides during liquid chromatography-electrospray ionization-quadrupole-time-of-flight tandem mass spectrometry (LC-ESI-q-TOF MS/MS) through replicated runs of a purified protein on two-dimensional gel. A precursor ion list of unmodified peptides with high mass intensities was obtained during the initial run followed by exclusion of these unmodified peptides in subsequent runs. The exclusion list can grow as long as replicate runs are iteratively performed. This enables the identifications of modified peptides with precursor ions of low intensities by MS/MS sequencing. Application of this approach in combination with the PTM search algorithm MODi to GAPDH protein in vivo modified by oxidative stress provides information on multiple protein modifications (19 types of modification on 42 sites) with >92% peptide coverage and the additional potential for finding novel modifications, such as transformation of Cys to Ser. On the basis of the information of precursor ion m/z, quantitative analysis of PTM was performed for identifying molecular changes in heterogeneous protein populations. Our results show that PTMs in mammalian systems in vivo are more complicated and heterogeneous than previously reported. We believe that this strategy has significant potential because it permits systematic characterization of multiple PTMs in functional proteomics.  相似文献   

10.
Protein identification by interrogation of databases requires a comprehensive compilation of modified amino acids forms. Here, we describe the chemical oxidation of carboxyamidomethyl cysteine to the sulfoxide and sulfone forms, species that may add more complexity to peptide analyses. They can be easily distinguished by tandem mass spectrometry (MS/MS) due to their characteristic pattern of side chain neutral eliminations either from the parent ion or ion series that generate dehydroalanine as detected by MS(3). This finding was supported by the MS(n) spectra recorded for a peptide isolated from a mixture of tryptic peptides and for a derivatized/oxidized synthetic peptide with a different sequence. These modifications and their diagnostic neutral losses should be included in the list of chemical modifications and in algorithms designed for the automatic sequencing of peptides and database searching.  相似文献   

11.
In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision.  相似文献   

12.
A system for creating a library of tandem mass spectra annotated with corresponding peptide sequences was described. This system was based on the annotated spectra currently available in the Global Proteome Machine Database (GPMDB). The library spectra were created by averaging together spectra that were annotated with the same peptide sequence, sequence modifications, and parent ion charge. The library was constructed so that experimental peptide tandem mass spectra could be compared with those in the library, resulting in a peptide sequence identification based on scoring the similarity of the experimental spectrum with the contents of the library. A software implementation that performs this type of library search was constructed and successfully used to obtain sequence identifications. The annotated tandem mass spectrum libraries for the Homo sapiens, Mus musculus, and Saccharomyces cerevisiae proteomes and search software were made available for download and use by other groups.  相似文献   

13.
Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software.Microorganisms have evolved their cellular metabolism to generate energy for life in unusual environments (1), and their capabilities are of great interest in the production of renewable bioenergy and could contribute toward managing the world''s current energy and climate crisis (2). Genomics studies have increased the number of sequenced bioenergy-related microbial genomes and revealed the possible biological reactions involved in bioenergy production (3). Studies of photosynthetic microorganisms, for example, have yielded insights into how they harvest solar energy and use it to produce bioenergy products (4). Despite this importance of microorganisms, the characterization of diverse microbial phenotypes by proteomics tandem mass spectrometry (MS/MS) has been limited. The dominant approaches for MS/MS analysis heavily rely on the availability of completely annotated genomes (i.e. accurate protein databases) (57), yet most microorganisms populating the planet have unsequenced or poorly annotated genomes. Thus it remains challenging to identify proteins from environmental and unculturable organisms.One solution to protein identification in a species with no sequenced genome is to use the genomes of closely related species (8). This requires matching MS/MS data to slightly different peptides in amino acid sequences (polymorphic, orthologous peptides); but matching shifted masses of peptides and their fragment ions is computationally expensive and challenging. Moreover, different species-specific post-translational modifications (PTMs)1 can make the cross-species identification more complex. The common computational approach is tolerantly matching de novo sequences derived from MS/MS data to the database while allowing for amino acid mutations and modifications (911). However, this approach critically depends on good de novo interpretations, which are nearly always partially incorrect and yield high-quality subsequences only for a small fraction of all spectra. The blind database search approach, developed to identify peptides with unexpected modifications, can also be used to directly match MS/MS data from unknown species to a database of closely related species, but its utilization is limited because of its exceptionally large search space (1218). These spectrum-database matching approaches to cross-species identification pose significant challenges in its speed and sensitivity with a huge database, which leads to a much longer search time and more false positive identifications (19, 20).As a complementary approach to spectrum-database matching, spectral library searching is an emerging and promising approach (21). A spectral library is a large collection of identified MS/MS spectra, and an unknown query spectrum can then be identified by direct spectral matching to the library. The great advantage of this approach is the reduction of search space and the use of fragmentation patterns of peptides. The spectral networks approach expands this concept to the identification of modified peptides in MS/MS data sets (22, 23). Spectral networks do not directly search a database, but groups MS/MS spectra by computing the pairwise similarity between MS/MS spectra of peptide variants and then constructs networks where each spectrum defines a node and each significant spectral pair, highly correlated in the fragmentation pattern, defines an edge (Fig. 1). In spectral networks, identification of spectra belonging to the same subnetwork should be related and thus the peptide sequence for an identified spectrum can be propagated to neighboring unidentified spectra.Open in a separate windowFig. 1.Overview of multi-species spectral networks. Nodes represent individual spectra and edges between nodes represent significant pairwise alignment between spectra; edges are labeled with amino acid mutations (dotted edges) or parent mass differences (solid edges). In spectral networks, a peptide and its related variants are ideally grouped into a single subnetwork. If at least one spectrum in a subnetwork is annotated (filled node), all the neighboring spectra (unfilled nodes) can potentially become identified by propagating the annotation over network edges. For example, all spectra in the subnetwork of “peptide A” (top left, blue network) can be annotated via up to three iterative propagations, first from A to {A1, A2, A3}, second from {A2, A3} to {A4, A5}, and third from {A4, A5} to A6. This paradigm can be equally applied to cross-species data analysis, as “peptide L” identified in species 1 (top middle, olive-colored network) is propagated to a node unidentified in species 2, identifying its orthologous “peptide l”, with a serine to alanine polymorphism. Thus, spectral networks enable the detection of orthologous peptide pairs between different species.We recently reported that a vast number of polymorphic, orthologous peptides across species are present in MS/MS data sets (24). We propose a new approach in cross-species proteomics research that aggregates MS/MS of multiple related species followed by spectral networks analysis of the pooled data to capitalize on pairs of spectra from orthologous peptides, as shown in Fig. 1. This approach does not require advance knowledge of the genomes for all species, and enables the identification of novel, polymorphic peptides across species via interspecies propagation. Compared with previous approaches, cross-species spectral network analysis has two major advantages. First, by matching spectra to spectra instead of spectra to database sequences, spectral networks only consider the sequence variability of peptides present in the samples instead of considering all possible variability across the whole database of related species; thus the performance of spectral networks is independent of database size. Second, the analysis of the set of highly related spectra increases the reliability in identifying polymorphic peptides in that multiple different spectra can support the same novel identification. The utility of spectral networks can be also expanded to the proteomic analysis of microbial communities that often contain hundreds of distinct organisms (25, 26). But despite the success of spectral networks in low complexity data sets (22, 23), the analysis of large multi-species proteomics data requires significantly higher reliability in spectral similarity scores because the number of pairwise spectral comparisons grows quadratically with the number of spectra.In this work, we present algorithmic and statistical advances to spectral networks to improve its utility with large and diverse spectral data sets. To statistically assess the significance of spectral alignments in pairing millions of spectra, we propose Align-GF (generating function for spectral alignment) to compute rigorous p values of a spectral pair based on the complete score histogram of all possible alignments between two spectra. We show that Align-GF successfully addressed the reliability challenge in a large data set analysis and demonstrated its utility by leading to a 4-fold increase in the sensitivity of spectral pairs. Even with this dramatically improved accuracy, a very small number of incorrect pairs in a network can still complicate propagation of annotations. To further progress toward the ideal scenario where each subnetwork consists of only spectra from a single peptide family, we introduce new procedures to split mixed networks from different peptide families and show that these effectively eliminate many false spectral pairs. Finally, we propose the first approach to calculation of false discovery rate (FDR) for spectral networks propagation of identifications from unmodified to progressively more modified peptides. The proposed FDR estimation was conservative and was more rigorous for highly modified peptides, and thus now makes propagation results comparable to other peptide identification approaches.The cross-species spectral networks techniques proposed here enabled the proteomic analysis of three different Cyanothece species, including a strain where the genome sequence is not known. Cyanobacteria are one of the most diverse and widely distributed microorganisms and have received significant consideration as satisfying various demands required in bioenergy generation (27). We show that spectral networks can improve peptide identification by up to 38% compared with mainstream approaches, including many polymorphic and modified peptides. Spectral networks could identify peptides with highly divergent sequences (with 7 amino acid mutations) by leveraging networks of variant peptides, and one example subnetwork of species-specific variants of phycobilisome proteins reflects the diversity of photosynthetic light-harvesting strategies (28). Our approach thus demonstrates the potential gains in multi-species proteomics and sets the stage for related developments in higher-complexity metaproteomics samples. Finally, spectral networks revealed many unidentified subnetworks containing only unidentified spectra, thus strongly suggesting the presence of novel peptides that are missing from current protein databases. Although we illustrate the potential of our approach on a specific set of bioenergy-related species, we note that the proposed approach is generic and should be applicable to any other set of related species. The diversity of biologically important protein families could be studied by comparing closely and more remotely related species.  相似文献   

14.
Mutation-tolerant protein identification by mass spectrometry.   总被引:8,自引:0,他引:8  
Database search in tandem mass spectrometry is a powerful tool for protein identification. High-throughput spectral acquisition raises the problem of dealing with genetic variation and peptide modifications within a population of related proteins. A method that cross-correlates and clusters related spectra in large collections of uncharacterized spectra (i.e., from normal and diseased individuals) would be very valuable in functional proteomics. This problem is far from being simple since very similar peptides may have very different spectra. We introduce a new notion of spectral similarity that allows one to identify related spectra even if the corresponding peptides have multiple modifications/mutations. Based on this notion, we developed a new algorithm for mutation-tolerant database search as well as a method for cross-correlating related uncharacterized spectra.  相似文献   

15.
Quantitative proteomics relies on accurate protein identification, which often is carried out by automated searching of a sequence database with tandem mass spectra of peptides. When these spectra contain limited information, automated searches may lead to incorrect peptide identifications. It is therefore necessary to validate the identifications by careful manual inspection of the mass spectra. Not only is this task time-consuming, but the reliability of the validation varies with the experience of the analyst. Here, we report a systematic approach to evaluating peptide identifications made by automated search algorithms. The method is based on the principle that the candidate peptide sequence should adequately explain the observed fragment ions. Also, the mass errors of neighboring fragments should be similar. To evaluate our method, we studied tandem mass spectra obtained from tryptic digests of E. coli and HeLa cells. Candidate peptides were identified with the automated search engine Mascot and subjected to the manual validation method. The method found correct peptide identifications that were given low Mascot scores (e.g., 20-25) and incorrect peptide identifications that were given high Mascot scores (e.g., 40-50). The method comprehensively detected false results from searches designed to produce incorrect identifications. Comparison of the tandem mass spectra of synthetic candidate peptides to the spectra obtained from the complex peptide mixtures confirmed the accuracy of the evaluation method. Thus, the evaluation approach described here could help boost the accuracy of protein identification, increase number of peptides identified, and provide a step toward developing a more accurate next-generation algorithm for protein identification.  相似文献   

16.
用于串联质谱鉴定多肽的计量方法   总被引:1,自引:0,他引:1  
目前已有多种对串联质谱与数据库中多肽的理论质谱的一致性进行评估的高通量计量算法用于鸟枪法蛋白质组学 (shotgunproteomics)研究。然而这些方法操作时存在大量错误的多肽鉴定。这里提出一种新的串联质谱识别多肽序列的计量算法。该算法综合考虑了串联质谱中不同离子出现的概率、多肽的酶切位点数、理论离子与实验离子的匹配程度和匹配模式。对大容量的串联质谱数据集的测试表明 ,根据算法开发的软件PepSearch比目前最常用的软件SEQUEST有更好的鉴定准确性。PepSearch可从http : compbio.sibsnet.org projects pepsearch下载。  相似文献   

17.
The discovery of unanticipated protein modifications is one of the most challenging problems in proteomics. Whereas widely used algorithms such as Sequest and Mascot enable mapping of modifications when the mass and amino acid specificity are known, unexpected modifications cannot be identified with these tools. We have developed an algorithm and software called P-Mod, which enables discovery and sequence mapping of modifications to target proteins known to be represented in the analysis or identified by Sequest. P-Mod matches MS/MS spectra to peptide sequences in a search list. For spectra of modified peptides, P-Mod calculates mass differences between search peptide sequences and MS/MS precursors and localizes the mass shift to a sequence position in the peptide. Because modifications are detected as mass shifts, P-Mod does not require the user to guess at masses or sequence locations of modifications. P-Mod uses extreme value statistics to assign p value estimates to sequence-to-spectrum matches. The reported p values are scaled to account for the number of comparisons, so that error rates do not increase with the expanded search lists that result from incorporating potential peptide modifications. Combination of P-Mod searches from multiple LC-MS/MS analyses and multiple samples revealed previously unreported BSA modifications, including a novel decarboxymethylation or D-->G substitution at position 579 of the protein. P-Mod can serve a unique role in the identification of protein modifications both from exogenous and endogenous sources and may be useful for identifying modified protein forms as biomarkers for toxicity and disease processes.  相似文献   

18.
Protein identification has been greatly facilitated by database searches against protein sequences derived from product ion spectra of peptides. This approach is primarily based on the use of fragment ion mass information contained in a MS/MS spectrum. Unambiguous protein identification from a spectrum with low sequence coverage or poor spectral quality can be a major challenge. We present a two-dimensional (2D) mass spectrometric method in which the numbers of nitrogen atoms in the molecular ion and the fragment ions are used to provide additional discriminating power for much improved protein identification and de novo peptide sequencing. The nitrogen number is determined by analyzing the mass difference of corresponding peak pairs in overlaid spectra of (15)N-labeled and unlabeled peptides. These peptides are produced by enzymatic or chemical cleavage of proteins from cells grown in (15)N-enriched and normal media, respectively. It is demonstrated that, using 2D information, i.e., m/z and its associated nitrogen number, this method can, not only confirm protein identification results generated by MS/MS database searching, but also identify peptides that are not possible to identify by database searching alone. Examples are presented of analyzing Escherichia coli K12 extracts that yielded relatively poor MS/MS spectra, presumably from the digests of low abundance proteins, which can still give positive protein identification using this method. Additionally, this 2D MS method can facilitate spectral interpretation for de novo peptide sequencing and identification of posttranslational or other chemical modifications. We envision that this method should be particularly useful for proteome expression profiling of organelles or cells that can be grown in (15)N-enriched media.  相似文献   

19.
The high selectivity and throughput of tandem mass spectrometry allow for rapid identification and localization of various posttranslational protein modifications from complex mixtures by shotgun approaches. Although sequence database search algorithms provide necessary support to process the potentially enormous quantity of MS/MS spectra generated from large scale tandem mass spectrometry experiments, false positive identifications of peptide modifications may exist even after implementation of stringent identification criteria. In this report, we describe factors that lead to misinterpretation of MS/MS spectra as well as common chemical and experimental artifacts that generate false positives using the proteomics-based identification of tyrosine nitration as an example. In addition to the proposed manual validation criteria, the importance of peptide synthesis and subsequent MS/MS characterization for validation of peptide nitration demonstrated by several examples from earlier publications is also presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号