首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
IGPS is a 51 kDa heterodimeric enzyme comprised of two proteins, HisH and HisF, that catalyze the hydrolysis of glutamine to produce NH3 in the HisH active site and the cyclization of ammonia with N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in HisF to produce imidazole glycerol phosphate (IGP) and 5-aminoimidazole-4-carboxamide ribotide (AICAR). Binding of PRFAR and IGP stimulates glutaminase activity in the HisH enzyme over 5,000 and 100-fold, respectively, despite the active sites being >25 Å apart. The details of this long-range protein communication process were investigated by solution NMR spectroscopy and CPMG relaxation dispersion experiments. Formation of the heterodimer enzyme results in a reduction in millisecond motions in HisF that extend throughout the protein. Binding of lGP results in an increase in protein-wide millisecond dynamics evidenced as severe NMR line broadening and elevated R ex values. Together, these data demonstrate a grouping of flexible residues that link the HisF active site with the protein interface to which HisH binds and provide a model for the path of communication between the IGPS active sites.  相似文献   

2.
It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
A selection strategy has been developed to identify amino acid residues involved in subunit interactions that coordinate the two half-reactions catalyzed by glutamine amidotransferases. The protein structures known for this class of enzymes have revealed that ammonia is shuttled over long distances and that each amidotransferase evolved different molecular tunnels for this purpose. The heterodimeric Escherichia coli imidazole glycerol phosphate (IGP) synthase was probed to assess if residues in the substrate amination subunit (HisF) are critical for the glutaminase activity in the HisH subunit. The activity of the HisH subunit is dependent upon binding of the nucleotide substrate at the HisF active site. This regulatory function has been exploited as a biochemical selection of mutant HisF subunits that retain full activity with ammonia as a substrate but, when constituted as a holoenzyme with wild-type HisH, impair the glutamine-dependent activity of IGP synthase. The steady-state kinetic constants for these IGP synthases with HisF alleles showed three distinct effects depending upon the site of mutation. For example, mutation of the R5 residue has similar effects on the glutamine-dependent amidotransfer reaction; however, k(cat)/K(m) for the glutaminase half-reaction was increased 10-fold over that for the wild-type enzyme with nucleotide substrate. This site appears essential for coupling of the glutamine hydrolysis and ammonia transfer steps and is the first example of a site remote to the catalytic triad that modulates the process. The results are discussed in the context of recent X-ray crystal structures of glutamine amidotransferases that relate the glutamine binding and acceptor binding sites.  相似文献   

4.
Imidazole glycerol phosphate (IGP) synthase is a glutamine amidotransferase that catalyzes the formation of IGP and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) from N(1)-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-car boxamide ribonucleotide (PRFAR). This enzyme represents a junction between histidine biosynthesis and de novo purine biosynthesis. The recent characterization of the HIS7 gene in the yeast Saccharomyces cerevisiae IGP synthase established that this protein is bifunctional, representing a fusion between the N-terminal HisH domain and a C-terminal HisF domain. Catalytically active yeast HIS7 was expressed in a bacterial system under the control of T7 polymerase promoter. The recombinant enzyme was purified to homogeneity and the native molecular weight and steady-state kinetic constants were determined. The yeast enzyme is distinguished from the Escherichia coli IGP synthase in its utilization of ammonia as a substrate. HIS7 displays a higher K(m) for glutamine and a lower turnover in the ammonia-dependent IGP synthase activity. As observed with the E. coli IGP synthase, HIS7 shows a low basal level glutaminase activity that can be enhanced 1000-fold in the presence of a nucleotide substrate or analog. The purification and characterization of the S. cerevisiae enzyme will enable a more detailed investigation of the biochemical mechanisms that mediate the ammonia-transfer process. The fused structural feature of the HIS7 protein and the development of a high-level production system for the active enzyme elevate the potential for determination of its three-dimensional structure through X-ray crystallography.  相似文献   

5.
Imidazole glycerol phosphate synthase, which links histidine and de novo purine biosynthesis, is a member of the glutamine amidotransferase family. In bacteria, imidazole glycerol phosphate synthase constitutes a bienzyme complex of the glutaminase subunit HisH and the synthase subunit HisF. Nascent ammonia produced by HisH reacts at the active site of HisF with N'-((5'-phosphoribulosyl)formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide to yield the products imidazole glycerol phosphate and 5-aminoimidazole-4-carboxamide ribotide. In order to elucidate the interactions between HisH and HisF and the catalytic mechanism of the HisF reaction, the enzymes tHisH and tHisF from Thermotoga maritima were produced in Escherichia coli, purified, and characterized. Isolated tHisH showed no detectable glutaminase activity but was stimulated by complex formation with tHisF to which either the product imidazole glycerol phosphate or a substrate analogue were bound. Eight conserved amino acids at the putative active site of tHisF were exchanged by site-directed mutagenesis, and the purified variants were investigated by steady-state kinetics. Aspartate 11 appeared to be essential for the synthase activity both in vitro and in vivo, and aspartate 130 could be partially replaced only by glutamate. The carboxylate groups of these residues could provide general acid/base catalysis in the proposed catalytic mechanism of the synthase reaction.  相似文献   

6.
《Biophysical journal》2022,121(1):119-130
Understanding the relationship between protein structures and their function is still an open question that becomes very challenging when allostery plays an important functional role. Allosteric proteins, in fact, exploit different ranges of motions (from sidechain local fluctuations to long-range collective motions) to effectively couple distant binding sites, and of particular interest is whether allosteric proteins of the same families with similar functions and structures also necessarily share the same allosteric mechanisms. Here, we compared the early dynamics initiating the allosteric communication of a prototypical allosteric enzyme from two different organisms, i.e., the imidazole glycerol phosphate synthase (IGPS) enzymes from the thermophilic bacteria and the yeast, working at high and room temperatures, respectively. By combining molecular dynamics simulations and network models derived from graph theory, we found rather distinct early allosteric dynamics in the IGPS from the two organisms, involving significatively different allosteric pathways in terms of both local and collective motions. Given the successful prediction of key allosteric residues in the bacterial IGPS, whose mutation disrupts its allosteric communication, the outcome of this study paves the way for future experimental studies on the yeast IGPS that could foster therapeutic applications by exploiting the control of IGPS enzyme allostery.  相似文献   

7.
It has been suggested that the common (betaalpha)(8)-barrel enzyme fold has evolved by the duplication and fusion of identical (betaalpha)(4)-half barrels, followed by the optimisation of their interface. In our attempts to reconstruct these events in vitro we have previously linked in tandem two copies of the C-terminal half barrel HisF-C of imidazole glycerol phosphate synthase from Thermotoga maritima and subsequently reconstituted in the fusion construct HisF-CC a salt bridge cluster present in wild-type HisF. The resulting recombinant protein HisF-C*C, which was produced in an insoluble form and unfolded with low cooperativity at moderate urea concentrations has now been stabilised and solubilised by a combination of random mutagenesis and selection in vivo. For this purpose, Escherichia coli cells were transformed with a plasmid-based gene library encoding HisF-C*C variants fused to chloramphenicol acetyltransferase (CAT). Stable and soluble variants were identified by the survival of host cells on solid medium containing high concentrations of the antibiotic. The selected HisF-C*C proteins, which were characterised in vitro in the absence of CAT, contained eight different amino acid substitutions. One of the exchanges (Y143C) stabilised HisF-C*C by the formation of an intermolecular disulfide bond. Three of the substitutions (G245R, V248M, L250Q) were located in the long loop connecting the two HisF-C copies, whose subsequent truncation from 13 to 5 residues yielded the stabilised variant HisF-C*C Delta. From the remaining substitutions, Y143H and V234M were most beneficial, and molecular dynamics simulations suggest that they strengthen the interactions between the half barrels by establishing a hydrogen-bonding network and an extensive hydrophobic cluster, respectively. By combining the loop deletion of HisF-C*C Delta with the Y143H and V234M substitutions, the variant HisF-C**C was generated. Recombinant HisF-C**C is produced in soluble form, forms a pure monomer with its tryptophan residues shielded from solvent and unfolds with similar cooperativity as HisF. Our results show that, starting from two identical and fused half barrels, few amino acid exchanges are sufficient to generate a highly stable and compact (betaalpha)(8)-barrel protein with wild-type like structural properties.  相似文献   

8.
The imidazole glycerol phosphate (ImGP) synthase from the hyperthermophilic bacterium Thermotoga maritima is a 1:1 complex of the glutaminase subunit HisH and the cyclase subunit HisF. It has been proposed that ammonia generated by HisH is transported through a channel to the active site of HisF, which generates intermediates of histidine (ImGP) and de novo biosynthesis of 5‐aminoimidazole‐4‐carboxamideribotide. Solution NMR spectroscopy of ammonium chloride‐titrated samples was used to study the interaction of NH3 with amino acids inside this channel. Although numerous residues showed 15N chemical shift changes, most of these changes were caused by nonspecific ionic strength effects. However, several interactions appeared to be specific. Remarkably, the amino acid residue Thr 78—which is located in the central channel—shows a large chemical shift change upon titration with ammonium chloride. This result and the reduced catalytic activity of the Thr78Met mutant indicate a special role of this residue in ammonia channeling. To detect and further characterize internal cavities in HisF, which might for example contribute to ammonia channeling, the interaction of HisF with the noble gas xenon was analyzed by solution NMR spectroscopy using 1H‐15N HSQC experiments. The results indicate that HisF contains three distinct internal cavities, which could be identified by xenon‐induced chemical shift changes of the neighboring amino acid residues. Two of these cavities are located at the active site at opposite ends of the substrate N′‐[(5′‐phosphoribulosyl)formimino]‐5‐aminoimidazole‐4‐carboxamide‐ribonucleotide (PRFAR) binding groove. The third cavity is located in the interior of the central β‐barrel of HisF and overlaps with the putative ammonia transport channel.  相似文献   

9.
Imidazole glycerol phosphate (IGP) synthase is a glutamine amidotransferase that catalyzes the formation of IGP and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) from N1-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR). This enzyme represents a junction between histidine biosynthesis and de novo purine biosynthesis. The recent characterization of the HIS7 gene in the yeast Saccharomyces cerevisiae IGP synthase established that this protein is bifunctional, representing a fusion between the N-terminal HisH domain and a C-terminal HisF domain. Catalytically active yeast HIS7 was expressed in a bacterial system under the control of T7 polymerase promoter. The recombinant enzyme was purified to homogeneity and the native molecular weight and steady-state kinetic constants were determined. The yeast enzyme is distinguished from the Escherichia coli IGP synthase in its utilization of ammonia as a substrate. HIS7 displays a higher Km for glutamine and a lower turnover in the ammonia-dependent IGP synthase activity. As observed with the E. coli IGP synthase, HIS7 shows a low basal level glutaminase activity that can be enhanced 1000-fold in the presence of a nucleotide substrate or analog. The purification and characterization of the S. cerevisiae enzyme will enable a more detailed investigation of the biochemical mechanisms that mediate the ammonia-transfer process. The fused structural feature of the HIS7 protein and the development of a high-level production system for the active enzyme elevate the potential for determination of its three-dimensional structure through X-ray crystallography.  相似文献   

10.
Insertion mutations that suppress some or all the pleiotropic effects of HisH and HisF overproduction were obtained by using transposons Tn10dTet and Tn10dCam. All suppressor mutations proved to be recessive, indicating that their effects were caused by loss of function; thus, the suppressors identify genes that are necessary to trigger the pleiotropic response when HisH and HisF are overproduced. Genetic mapping of the suppressor mutations identifies four novel loci on the Salmonella typhimurium genetic map. Mutations in osmH (min 49) behave as general suppressors that abolish all manifestations of the pleiotropic response. Mutations in sfiY (min 83) suppress cell division inhibition and thermosensitivity but not osmosensitivity. Mutations that suppress only cell division inhibition define another locus, sfiX (min 44). A fourth novel locus, sfiW (min 19), is also involved in cell division inhibition. The phenotype of sfiW mutations is in turn pleiotropic: they suppress cell division inhibition, make S. typhimurium unable to grow in minimal media, and cause slow growth and abnormal colony and cell shape. The inability of sfiW mutants to grow in minimal medium cannot be relieved by any known nutritional requirement or by the use of carbon sources other than glucose. The hierarchy of suppressor phenotypes and the existence of epistatic effects among suppressor mutations suggest a pathway-like model for the Hisc pleiotropic response.  相似文献   

11.
Inhibition of cell division associated with overexpression of hisH and hisF in Salmonella typhimurium is strongly reminiscent of a cellular response to DNA damage. On these grounds, we investigated the involvement of a metabolite which appeared to represent a possible candidate for an endogenous mutagen: the base analog 5-amino-4-carboxamide imidazole riboside 5′-phosphate (AICAR), a by-product of HisH and HisF activity. However, we showed that AICAR is not an endogenous mutagen in S. typhimurium. Other types of DNA damage induced by his overexpression seem also unlikely, since similar mutation rates are found in hisO + and hisO c strains. We also show that AICAR production is not involved in the pleiotropic effects of his overexpression, since these are still observed in strains devoid of AICAR. Thus inhibition of cell division resulting from HisH and HisF overexpression must operate through a mechanism unrelated to the role of these proteins in histidine biosynthesis.  相似文献   

12.
Inhibition of cell division associated with overexpression of hisH and hisF in Salmonella typhimurium is strongly reminiscent of a cellular response to DNA damage. On these grounds, we investigated the involvement of a metabolite which appeared to represent a possible candidate for an endogenous mutagen: the base analog 5-amino-4-carboxamide imidazole riboside 5-phosphate (AICAR), a by-product of HisH and HisF activity. However, we showed that AICAR is not an endogenous mutagen in S. typhimurium. Other types of DNA damage induced by his overexpression seem also unlikely, since similar mutation rates are found in hisO + and hisO c strains. We also show that AICAR production is not involved in the pleiotropic effects of his overexpression, since these are still observed in strains devoid of AICAR. Thus inhibition of cell division resulting from HisH and HisF overexpression must operate through a mechanism unrelated to the role of these proteins in histidine biosynthesis.  相似文献   

13.
A novel method for post-treatment of gene-engineered proteins is reported. A coden of Cys-His unit is introduced into the N-terminal of cecropin CMIV by using PCR. The gene is expressed in E. coli fused with GST. After purification, the fusion protein is cleaved by [Pd(en)(H2O)2]2+ at the His-Arg bond and the cecropin CMIV with antibacterial activity is obtained. The preliminary results held some promise of success for application of the palladium(II) complex as cleavage agent for the production of peptide drugs from gene-engineering fusion proteins.  相似文献   

14.
The BEACH domain is highly conserved in a large family of eukaryotic proteins, and is crucial for their functions in vesicle trafficking, membrane dynamics and receptor signaling. However, it does not share any sequence homology with other proteins. Here we report the crystal structure at 2.9 A resolution of the BEACH domain of human neurobeachin. It shows that the BEACH domain has a new and unusual polypeptide backbone fold, as the peptide segments in its core do not assume regular secondary structures. Unexpectedly, the structure also reveals that the BEACH domain is in extensive association with a novel, weakly conserved pleckstrin-homology (PH) domain. Consistent with the structural analysis, biochemical studies show that the PH and BEACH domains have strong interactions, suggesting they may function as a single unit. Functional studies in intact cells demonstrate the requirement of both the PH and the BEACH domains for activity. A prominent groove at the interface between the two domains may be used to recruit their binding partners.  相似文献   

15.
The evolution of the prototypical (βα)8-barrel protein imidazole glycerol phosphate synthase (HisF) was studied by complementary computational and experimental approaches. The 4-fold symmetry of HisF suggested that its constituting (βα)2 quarter-barrels have a common evolutionary origin. This conclusion was supported by the computational reconstruction of the HisF sequence of the last common ancestor, which showed that its quarter-barrels were more similar to each other than are those of extant HisF proteins. A comprehensive sequence analysis identified HisF-N1 [corresponding to (βα)1-2] as the slowest evolving quarter-barrel. This finding indicated that it is the closest relative of the common (βα)2 predecessor, which must have been a stable and presumably tetrameric protein. In accordance with this prediction, a recombinantly produced HisF-N1 protein was properly folded and formed a tetramer being stabilised by disulfide bonds. The introduction of a disulfide bond in HisF-C1 [corresponding to (βα)5-6] also resulted in the formation of a stable tetramer. The fusion of two identical HisF-N1 quarter-barrels yielded the stable dimeric half-barrel HisF-N1N1. Our findings suggest a two-step evolutionary pathway in which a HisF-N1-like predecessor was duplicated and fused twice to yield HisF. Most likely, the (βα)2 quarter-barrel and (βα)4 half-barrel intermediates on this pathway were stabilised by disulfide bonds that became dispensable upon consolidation of the (βα)8-barrel.  相似文献   

16.
The (betaalpha)8-barrel, which is the most frequently encountered protein fold, is generally considered to consist of a single structural domain. However, the X-ray structure of the imidazoleglycerol phosphate synthase (HisF) from Thermotoga maritima has identified it as a (betaalpha) 8-barrel made up of two superimposable subdomains (HisF-N and HisF-C). HisF-N consists of the four N-terminal (betaalpha) units and HisF-C of the four C-terminal (betaalpha) units. It has been postulated, therefore, that HisF evolved by tandem duplication and fusion from an ancestral half-barrel. To test this hypothesis, HisF-N and HisF-C were produced in Escherichia coli, purified and characterized. Separately, HisF-N and HisF-C are folded proteins, but are catalytically inactive. Upon co-expression in vivo or joint refolding in vitro, HisF-N and HisF-C assemble to the stoichiometric and catalytically fully active HisF-NC complex. These findings support the hypothesis that the (betaalpha)8-barrel of HisF evolved from an ancestral half-barrel and have implications for the folding mechanism of the members of this large protein family.  相似文献   

17.
Although it is clear that soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complex plays an essential role in synaptic vesicle fusion, the dynamics of SNARE assembly during vesicle fusion remain to be determined. In this report, we employ fluorescence resonance energy transfer technique to study the formation of SNARE complexes. Donor/acceptor pair variants of green fluorescent protein (GFP), cyan fluorescent protein (CFP), and yellow fluorescent protein (YFP) are fused with the N termini of SNAP-25 and synaptobrevin, respectively. In vitro assembly of SNARE core complex in the presence of syntaxin shows strong fluorescence resonance energy transfer (FRET) between the CFP-SNAP-25 and YFP-synaptobrevin. Under the same conditions, CFP fused to the C terminus of SNAP-25, and YFP- synaptobrevin have no FRET. Adenovirus-mediated gene transfer is used to express the fusion proteins in PC12 cells and cultured rat cerebellar granule cells. Strong FRET is associated with neurite membranes and vesicular structures in PC12 cells co-expressing CFP-SNAP-25 and YFP-synaptobrevin. In cultured rat cerebellar granule cells, FRET between CFP-SNAP-25 and YFP-synaptobrevin is mostly associated with sites presumed to be synaptic junctions. Neurosecretion in PC12 cells initiated by KCl depolarization leads to an increase in the extent of FRET. These results demonstrate that significant amounts of stable SNARE complex exist prior to evoked synaptic vesicle fusion and that the assembly of SNARE complex occurs during vesicle docking/priming stage. Moreover, it demonstrates that FRET can be used as an effective tool for investigating dynamic SNARE interactions during synaptic vesicle fusion.  相似文献   

18.
Although chaperone‐assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose‐binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter‐domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP‐mediated structural distortions are very rare.  相似文献   

19.
20.
Jin MS  Lee JO 《BMB reports》2008,41(5):353-357
LRR family proteins play important roles in a variety of physiological processes. To facilitate their production and crystallization, we have invented a novel method termed "Hybrid LRR Technique". Using this technique, the first crystal structures of three TLR family proteins could be determined. In this review, design principles and application of the technique to protein crystallization will be summarized. For crystallization of TLRs, hagfish VLR receptors were chosen as the fusion partners and the TLR and the VLR fragments were fused at the conserved LxxLxLxxN motif to minimize local structural incompatibility. TLR-VLR hybridization did not disturb structures and functions of the target TLR proteins. The Hybrid LRR Technique is a general technique that can be applied to structural studies of other LRR proteins. It may also have broader application in biochemical and medical application of LRR proteins by modifying them without compromising their structural integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号