首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malate dehydrogenase (MDH; EC 1.1.1.37) from the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus was purified by a two-step procedure involving affinity chromatography and gel filtration. The enzyme consists of identical subunits which had molecular weights of approximately 35,000. In its active form at 55 degrees C, it formed tetramers. At lower temperatures, inactive dimers and trimers existed. Antibodies against the purified enzyme were produced, and immunotitration and enzyme-linked immunosorbent assays showed that there was an immunochemical homology between the MDH from C. aurantiacus and MDHs from several other bacteria. The amino acid composition of C. aurantiacus MDH was similar to those of other MDHs. The N-terminal amino acid sequence was enriched with hydrophobic amino acids, which showed a high degree of functional similarity to amino acids at the N-terminal ends of both Escherichia coli and Thermus flavus MDHs. The activity of the native enzyme was inhibited by high concentrations of substrate and had temperature and pH optima consistent with the optimal growth conditions for the organism.  相似文献   

2.
The genes (mdh) encoding malate dehydrogenase (MDH) from the mesophile Chlorobium vibrioforme and the moderate thermophile C. tepidum were cloned and sequenced, and the complete amino acid sequences were deduced. When the region upstream of mdh was analyzed, a sequence with high homology to an operon encoding ribosomal proteins from Escherichia coli was found. Each mdh gene consists of a 930-bp open reading frame and encodes 310 amino acid residues, corresponding to a subunit weight of 33,200 Da for the dimeric enzyme. The amino acid sequence identity of the two MDHs is 86%. Homology searches using the primary structures of the two MDHs revealed significant sequence similarity to lactate dehydrogenases. A hybrid mdh was constructed from the 3' part of mdh from C. tepidum and the 5' part of mdh from C. vibrioforme. The thermostabilities of the hybrid enzyme and of MDH from C. vibrioforme and C. tepidum were compared.  相似文献   

3.
The malate dehydrogenase (MDH) from Streptomyces aureofaciens was purified to homogeneity and its physical and biochemical properties were studied. Its amino-terminal sequence perfectly matched the amino-terminal sequence of the MDH from Streptomyces atratus whose biochemical characteristics have never been determined. The molecular mass of the native enzyme, estimated by size-exclusion chromatography, was 70 kDa. The protein was a homodimer, with a 38-kDa subunit molecular mass. It showed a strong specificity for NADH and was much more efficient for the reduction of oxaloacetate than for the oxidation of malate, with a pH optimum of 8. Unlike MDHs from other sources, it was not inhibited by excess oxaloacetate. This first complete functional characterization of an MDH from Streptomyces shows that the enzyme is very similar in many respects to other bacterial MDHs with the notable exception of a lack of inhibition by excess substrate.  相似文献   

4.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

5.
I K Kang  S G Suh  K C Gross    J K Byun 《Plant physiology》1994,105(3):975-979
beta-Galactosidase (EC 3.2.1.23) from persimmon fruit was purified 114-fold with a 15% yield using Sephadex G-100 gel filtration, CM-Sephadex ion exchange, and Sephacryl S-200 gel filtration chromatography, with subsequent electroelution from nondenaturing polyacrylamide gel electrophoresis (PAGE) gels. The estimated molecular mass of the native beta-galactosidase by Sephacryl S-200 was 118 kD. After sodium dodecyl sulfate-PAGE of the enzyme electroeluted from native gels, two subunits with estimated molecular masses of 34 and 44 kD were observed, suggesting that the native enzyme was an aggregate of several subunits. Amino acid composition and N-terminal amino acid sequences of the two major subunits were different.  相似文献   

6.
20 beta-Hydroxysteroid dehydrogenase was purified from a cytosol fraction of neonatal pig testes to homogeneity as demonstrated by polyacrylamide gel electrophoresis (PAGE) and by isoelectric focusing. The molecular weight was estimated to be 30,500 using PAGE with sodium dodecyl sulfate and the gel filtration method. Molecular estimations showed that the purified enzyme consisted of a single polypeptide chain. It catalyzed the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 beta-dihydroxypregn-4-en-3-one with NADPH. Furthermore, the C21-steroids, such as progesterone, pregnenolone, 17 alpha-hydroxypregnenolone, deoxycorticosterone, and deoxycortisol were also reduced by the purified enzyme. Apparent Km values for 17 alpha-hydroxyprogesterone, progesterone, pregnenolone, and deoxycorticosterone were 9.4, 1.5, 4.0, and 8.6 microM, respectively. The enzyme did not show 20 alpha-hydroxysteroid dehydrogenase activity. The maximum rate of enzyme activity was observed at 45 degrees C and optimum pH was at pH 5.5. The enzyme activity was strongly inhibited by heavy metal ions such as Hg2+ and Cu2+.  相似文献   

7.
Chloroplastic phenylalanyl-tRNA synthetase from bean leaves is purified under optimal protective conditions over 4,900-fold. Its apparent molecular weight is 78,000, as determined by gel filtration, with a dimeric subunit structure of alpha beta (alpha = 33,000 and beta = 42,000), as determined by sodium dodecyl sulfate gel electrophoresis. This indicates a drastic size reduction of 40% for each subunit compared to the corresponding cytoplasmic enzyme and a unique quaternary structure. Heterologous aminoacylation and substrate properties of ATP analogs indicate substantial differences in the topographies of the substrate binding domains of these two heterotopic intracellular plant enzymes. No common antigenic determinants with the bean cytoplasmic enzyme were detected by polyclonal antibodies against the chloroplastic enzyme. The same negative result applies to the immunological comparison with the partially purified enzymes from the cyanobacterium Anacystis nidulans and the photosynthetic green sulfur bacterium Chlorobium limicola that both have a molecular weight of 260,000.  相似文献   

8.
A protein was isolated from membranes of the green sulfur bacterium Chlorobium tepidum. This protein was characterized by gel electrophoresis, gel filtration, analytical ultracentrifugation and amino acid sequencing. The molecular weight of the purified protein was shown to be 26 kDa by SDS-PAGE. HPLC gelfiltration, SDS-PAGE and analytical ultracentrifugation are consistent with the presence of a homogenous protein in the preparations. Amino acid analysis was obtained from the isolated protein after fragmentation with Lys-C, trypsin and cyanogen bromide. The cleavage pattern resulting from these treatments combined with Edman sequencing yield a sequence allowing the identification of an integral membrane agglutinin in Chl. tepidum.  相似文献   

9.
Methanotrophs are microorganisms that possess the unique ability to utilize methane as their sole source of carbon and energy. A novel culture system, known as the compulsory circulation diffusion system, was developed for rapid growth of methanotrophic bacteria. Methanol dehydrogenase (MDH, EC 1.1.99.8) fromMethylomicrobium sp. HG-1, which belongs to the type 1 group of methanotrophic bacteria, can catalyze the oxidation of methanol directly into formaldehyde. This enzyme was purified 8-fold to electrophoretic homogeneity by means of a 4 step procedure and was found in the soluble fraction. The relative molecular weight of the native enzyme was estimated by gel filtration to be 120 kDa. The enzyme consisted of two identical dimers which, in turn, consisted of large and small subunits in anα 2 β 2 conformation. The isoelectric point was 5.4. The enzymatic activity of purified MDH was optimum at pH 9.0 and 60°C, and remained stable at that temperature for 20 min. MDH was able to oxidize primary alcohols from methanol to octanol and formaldehyde.  相似文献   

10.
An adenosine nucleosidase (ANase) (EC 3.2.2.7) was purified from young leaves of Coffea arabica L. cv. Catimor. A sequence of fractionating steps was used starting with ammonium sulphate salting-out, followed by anion exchange, hydrophobic interaction and gel filtration chromatography. The enzyme was purified 5804-fold and a specific activity of 8333 nkat mg-1 protein was measured. The native enzyme is a homodimer with an apparent molecular weight of 72 kDa estimated by gel filtration and each monomer has a molecular weight of 34.6 kDa, estimated by SDS-PAGE. The enzyme showed maximum activity at pH 6.0 in citrate-phosphate buffer (50 mM). The calculated Km is 6.3 microM and Vmax 9.8 nKat.  相似文献   

11.
L-Glutamic acid decarboxylase (GAD; EC 4.1.1.15) was purified to apparent homogeneity from the brain of the locust Schistocerca gregaria using a combination of chromatofocusing (Mono P) and gel filtration (Superose 12) media. The homogeneity of the enzyme preparation was established by native polyacrylamide gel electrophoresis (PAGE) with silver staining. The molecular weight of the purified enzyme was estimated from native gradient gel electrophoresis and gel filtration chromatography to be 97,000 +/- 4,000 and 93,000 +/- 5,000, respectively. When analysed by sodium dodecyl sulphate-PAGE, the enzyme was found to be composed of two distinct subunits of Mr 51,000 +/- 1,000 and 44,000 +/- 1,500. Tryptic peptide maps of iodinated preparations of these two subunits showed considerable homology, suggesting that the native enzyme is a dimer of closely related subunits. The purified enzyme had a pH optimum of 7.0-7.4 in 100 mM potassium phosphate buffer and an apparent Km for glutamate of 5.0 mM. The enzyme was strongly inhibited by the carbonyl-trapping reagent aminooxyacetic acid with an I50 value of 0.2 microM.  相似文献   

12.
2-Aminonumconic 6-semialdehyde is an unstable intermediate in the biodegradation of nitrobenzene and 2-aminophenol by Pseudomonas pseudoalcaligenes JS45. Previous work has shown that enzymes in cell extracts convert 2-aminophenol to 2-aminomuconate in the presence of NAD+. In the present work, 2-aminomuconic semialdehyde dehydrogenase was purified and characterized. The purified enzyme migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 57 kDa. The molecular mass of the native enzyme was estimated to be 160 kDa by gel filtration chromatography. The optimal pH for the enzyme activity was 7.3. The enzyme is able to oxidize several aldehyde analogs, including 2-hydroxymuconic semialdehyde, hexaldehyde, and benzaldehyde. The gene encoding 2-aminomuconic semialdehyde dehydrogenase was identified by matching the deduced N-terminal amino acid sequence of the gene with the first 21 amino acids of the purified protein. Multiple sequence alignment of various semialdehyde dehydrogenase protein sequences indicates that 2-aminomuconic 6-semialdehyde dehydrogenase has a high degree of identity with 2-hydroxymuconic 6-semialdehyde dehydrogenases.  相似文献   

13.
Aminopeptidase B (EC 3.4.11.6; L-arginyl-beta-naphthylamidase) was purified 1,800-fold from human placental cytoplasm and characterized. The enzyme was subjected to ammonium sulfate fractionation and a series of chromatographies on DE-52, hydroxylapatite, Bio-gel A 0.5 m and L-arginine-Sepharose. The native molecular mass of the enzyme was estimated to be 220,000 by gel filtration. The molecular mass was estimated to be about 83,000 by SDS/PAGE in the absence of 2-mercaptoethanol, suggesting that the enzyme exists in a polymeric form. The isoelectric point of the enzyme was 5.4. The purified enzyme was most active at pH 7.2 with L-arginyl-beta-naphthylamide as substrate and the Km value for this enzyme was 0.3 mmol/l. Human placental aminopeptidase B was markedly activity by Cl-. Bestatin and arphamenin, low molecular weight peptides, showed appreciable inhibition of this enzyme. However, amastatin and puromycin did not inhibit the enzyme. Bacitracin markedly activated this enzyme.  相似文献   

14.
Ferredoxin-NAD(P)(+) reductase [EC 1.18.1.3, 1.18.1.2] was isolated from the green sulfur bacterium Chlorobium tepidum and purified to homogeneity. The molecular mass of the subunit is 42 kDa, as deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular mass of the native enzyme is approximately 90 kDa, estimated by gel-permeation chromatography, and is thus a homodimer. The enzyme contains one FAD per subunit and has absorption maxima at about 272, 385, and 466 nm. In the presence of ferredoxin (Fd) and reaction center (RC) complex from C. tepidum, it efficiently catalyzes photoreduction of both NADP(+) and NAD(+). When concentrations of NADP(+) exceeded 10 microM, NADP(+) photoreduction rates decreased with increased concentration. The inhibition by high concentrations of substrate was not observed with NAD(+). It also reduces 2,6-dichlorophenol-indophenol (DPIP) and molecular oxygen with either NADPH or NADH as efficient electron donors. It showed NADPH diaphorase activity about two times higher than NADH diaphorase activity in DPIP reduction assays at NAD(P)H concentrations less than 0.1 mM. At 0.5 mM NAD(P)H, the two activities were about the same, and at 1 mM, the former activity was slightly lower than the latter.  相似文献   

15.
NADH:nitrate reductase (EC 1.6.6.1) from Chlorella vulgaris has been purified 640-fold with an over-all yield of 26% by a combination of protamine sulfate fractionation, ammonium sulfate fractionation, gel chromatography, density gradient centrifugation, and DEAE-chromatography. The purified enzyme is stable for more than 2 months when stored at minus 20 degrees in phosphate buffer (pH 6.9) containing 40% (v/v) glycerol. After the initial steps of the purification, a constant ratio of NADH:nitrate reductase activity to NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities was observed. One band of protein was detected after polyacrylamide gel electrophoresis of the purified enzyme. This band also gave a positive stain for heme, NADH dehydrogenase, and reduced methyl viologen:nitrate reductase. One band, corresponding to a molecular weight of 100, 000, was detected after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains FAD, heme, and molybdenum in a 1:1:0.8 ratio. One "cyanide binding site" per molybdenum was found. No non-heme-iron or labile sulfide was detected. From a dry weight determination of the purified enzyme, a minimal molecular weight of 152, 000 per molecule of heme or FAD was calculated. An s20, w of 9.7 S for nitrate reductase was found by the use of sucrose density gradient centrifugation and a Stokes radius of 89 A was estimated by gel filtration techniques. From these values, and the assumption that the partial specific volume is 0.725 cc/g, a molecular weight of 356, 000 was estimated for the native enzyme. These data suggest that the native enzyme contains a minimum of 2 molecules each of FAD, heme, and molybdenum and is composed of at least three subunits.  相似文献   

16.
Mannitol biosynthesis in Candida magnoliae HH-01 (KCCM-10252), a yeast strain that is currently used for the industrial production of mannitol, is catalyzed by mannitol dehydrogenase (MDH) (EC 1.1.1.138). In this study, NAD(P)H-dependent MDH was purified to homogeneity from C. magnoliae HH-01 by ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The relative molecular masses of C. magnoliae MDH, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography, were 35 and 142 kDa, respectively, indicating that the enzyme is a tetramer. This enzyme catalyzed both fructose reduction and mannitol oxidation. The pH and temperature optima for fructose reduction and mannitol oxidation were 7.5 and 37 degrees C and 10.0 and 40 degrees C, respectively. C. magnoliae MDH showed high substrate specificity and high catalytic efficiency (k(cat) = 823 s(-1), K(m) = 28.0 mM, and k(cat)/K(m) = 29.4 mM(-1) s(-1)) for fructose, which may explain the high mannitol production observed in this strain. Initial velocity and product inhibition studies suggest that the reaction proceeds via a sequential ordered Bi Bi mechanism, and C. magnoliae MDH is specific for transferring the 4-pro-S hydrogen of NADPH, which is typical of a short-chain dehydrogenase reductase (SDR). The internal amino acid sequences of C. magnoliae MDH showed a significant homology with SDRs from various sources, indicating that the C. magnoliae MDH is an NAD(P)H-dependent tetrameric SDR. Although MDHs have been purified and characterized from several other sources, C. magnoliae MDH is distinguished from other MDHs by its high substrate specificity and catalytic efficiency for fructose only, which makes C. magnoliae MDH the ideal choice for industrial applications, including enzymatic synthesis of mannitol and salt-tolerant plants.  相似文献   

17.
《Experimental mycology》1987,11(1):36-48
A method was developed to assay glucose-1-phosphate uridylyltransferase and 2-acetamido-2-deoxyglucose-1-phosphate uridylyltransferase by separation and quantitation of the corresponding sugar nucleotides by HPLC. Glucose-1-phosphate uridylyltransferase (GPUT) fromNeurospora crassa was purified by a method involving ion-exchange, gel filtration, adsorption, and affinity chromatographic procedures. The enzyme was stable until the last step of purification, after which it became extremely labile, apparently due to disaggregation. With the purified enzyme, kinetic properties of GPUT were determined. Polyacrylamide gel electrophoresis (PAGE) of the purified enzyme under nondenaturing conditions showed a single band which contained all the enzymatic activity. Denaturation of the enzyme with sodium dodecyl sulfate followed by PAGE resolved the single band into four polypeptides of different molecular masses. The minimal molecular mass of the enzyme was calculated to be 537,000 Da. This value was similar to that calculated by sucrose density sedimentation, 580,000 Da, but different from that estimated by gel filtration, 1,600,000 Da. It is proposed that the native enzyme is a trimer which may be disaggregated. By electron microscopy of negatively stained samples, the enzyme appeared in the form of rosettes 10 nm in diameter.  相似文献   

18.
1-3 PPD dehydrogenase (EC 1.1.1.202) was purified to homogeneity from Clostridium butyricum E5 grown anaerobically on glycerol in continuous culture. The native enzyme was estimated by gel filtration to have a molecular weight of 384 200 +/- 31 100 Da; it is predicted to exist as an octamer or a decamer of identical molecular weight subunits. When tested as a dehydrogenase, the enzyme was most active with 1-3 propane diol. In the physiological direction, 3-hydroxypropionaldehyde was the preferred substrate. The apparent K(m) values of the enzyme for 3-hydroxypropionaldehyde and NADH were 0.17 mM and 0.06 mM, respectively. The enzyme requires only Mn(2+) for full activity. The enzyme was found to have properties similar to those reported for Klebsellia pneumoniae, Citrobacter freundii, and Clostridium pasteurianum.  相似文献   

19.
In the present study we have purified the intracellular veratryl alcohol oxidase (VAO) enzyme from Pseudomonas aeruginosa strain BCH to evaluate its dye decolorizing potential. The enzyme was purified by ion exchange chromatography using DEAE cellulose followed by gel filtration chromatography using Biogel P-100. The molecular weight of the purified enzyme was estimated by polyacrylamide gel electrophoresis (PAGE) analysis. The VAO was purified up to 12 and 16.3-fold by ion exchange and gel filtration chromatography respectively. VAO was estimated to be about 85 kDa by SDS–PAGE. The optimum pH and temperature for purified VAO was 3 and 55°C respectively. The purified enzyme exerted its optimal activity with veratryl alcohol and also oxidized various other substrates, whereas diminished activity was noted in case of tryptophan and xylidine. The metal ions Mn++ and Hg++ were found to suppress the oxidase activity. The purified enzyme decolorized different dyes with variable decolorization rates and efficiencies. Decolorization mechanism of Remazol Black by purified enzyme was studies in detail using various analytical techniques like HPLC, GC–MS and FTIR. This study is useful for understanding the precise role of Pseudomonas aeruginosa strain BCH in the decolorization of textile dyes containing industrial wastewater.  相似文献   

20.
Carbon monoxide dehydrogenase (CO dehydrogenase) has been purified from the homoacetate-fermenting bacterium, Clostridium thermoaceticum. By use of 63Ni, it has been determined that the dehydrogenase is a metallo nickel enzyme. Nickel was rapidly taken up by the organism and most of the ingested metal was found to be incorporated into CO dehydrogenase. As estimated by gel filtration, the native enzyme has a molecular weight of 410,000. Ferredoxin and a membrane-bound b-type cytochrome, both obtained from C. thermoaceticum, are rapidly reduced by the enzyme in the presence of carbon monoxide and both are considered to be native electron carriers. FMN and Desulfovibrio vulgaris cytochrome c3 were also reduced by the enzyme, while spinach ferredoxin, FAD, NAD, and NADP were not. CO dehydrogenase activity was not appreciably affected by propyl iodide, methyl iodide, carbon tetrachloride, or metal chelators, but was reversibly inhibited by KCN. A method for the in situ assay of CO dehydrogenase in polyacrylamide gels is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号