首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The polyamine content in cells is regulated by both polyamine biosynthesis and its transport. We recently obtained and characterized three clones of polyamine transport genes (pPT104, pPT79 and pPT71) inEscherichia coli. The system encoded by pPT104 was the spermidine-preferential uptake system and that encoded by pPT79 the putrescine-specific uptake system. Furthermore, these two systems were periplasmic transport systems consisting of four kinds of proteins: pPT104 clone encoded potA, -B,-C, and -D proteins and pPT79 clone encoded potF, -G, -H, and -I proteins, judging from the deduced amino acid sequences of the nucleotide sequences of these clones. PotD and -F proteins were periplasmic substrate binding proteins and potA and -G proteins membrane associated proteins having the nucleotide binding site. PotB and -C proteins, and potH and -I proteins were transmembrane proteins probably forming channels for spermidine and putrescine, respectively. Their amino acid sequences in the corresponding proteins were similar to each other. The functions of potA and -D proteins in the spermidine-preferential uptake system encoded by pPT104 clone were studied in detail through a combined biochemical and genetic approach. In contrast, the putrescine transport system encoded by pPT71 consisted of one membrane protein (potE protein) haveing twelve transmembrane segments, and was active in both the uptake and excretion of putrescine. The uptake was dependent on membrane potential, and the excretion was due to the exchange reaction between putrescine and ornithine.  相似文献   

3.
Ornithine decarboxylase of the African trypanosome Trypanosoma brucei brucei had an estimated native molecular weight of 100,000 by gel filtration and a subunit molecular weight of 45,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding this enzyme, present in a single copy in T. brucei, was identified by mouse ornithine decarboxylase cDNA under relatively stringent conditions of hybridization and subcloned in a 5.9-kilobase (kb) SstI fragment from a cosmid clone into the plasmid pUC 19. This clone encompassed a 2.8-kb SstII fragment that contained the entire T. brucei ornithine decarboxylase gene. The 2.8-kb SstII fragment hybridized to a 2.4-kb mRNA that presumably encodes the parasite enzyme. The 2.8-kb SstII fragment was partially sequenced and found to contain an open reading frame of 445 amino acids that has 61.5% homology with the corresponding sequence of the mouse enzyme. The only major discrepancies between the two enzymes are the addition of a 20-amino acid N-terminal peptide and the deletion of a 36-amino acid C-terminal peptide and the T. brucei ornithine decarboxylase. The C terminus has been postulated to be one of the structural factors associated with rapid in vivo turnover of mammalian ornithine decarboxylase. The absence of this C-terminal peptide in T. brucei ornithine decarboxylase predicts a slow turnover for the parasite enzyme in vivo, and this is supported by our experimental data. The lack of turnover of ornithine decarboxylase in trypanosomes may constitute the basis of selective antitrypanosomal action of the irreversible enzyme inhibitor DL-alpha-difluoromethylornithine.  相似文献   

4.
The nucleotide sequence of the gene for the spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome was determined. It contained four open reading frames encoding A, B, C, and D proteins. By making several subclones, we showed that expression of all the four proteins was necessary for maximal spermidine and putrescine transport activity. A single transport system was involved in the transport of both spermidine and putrescine. The A protein (Mr 43K) was found to be associated with membranes, as shown by Western blot analysis of the cell fractions. In addition, it had consensus amino acid sequences for the nucleotide binding site. B (Mr 31K) and C (Mr 29K) proteins consisted of six putative transmembrane spanning segments linked by hydrophilic segments of variable length as shown by cell localization of the proteins synthesized in maxicells and by hydropathy profiles. D protein (Mr 39K) was inferred to be a polyamine binding protein existing in a periplasmic fraction from the results of Western blot analysis of the cell fractions and from measurements of polyamine binding to the protein. These results indicate that the spermidine and putrescine transport system can be defined as a bacterial periplasmic transport system.  相似文献   

5.
We report here on the existence of a new gene for lysine decarboxylase in Escherichia coli K-12. The hybridization experiments with a cadA probe at low stringency showed that the homologous region of cadA was located in lambda Kohara phage clone 6F5 at 4.7 min on the E. coli chromosome. We cloned the 5.0-kb HindIII fragment of this phage clone and sequenced the homologous region of cadA. This region contained a 2,139-nucleotide open reading frame encoding a 713-amino-acid protein with a calculated molecular weight of 80,589. Overexpression of the protein and determination of its N-terminal amino acid sequence defined the translational start site of this gene. The deduced amino acid sequence showed 69.4% identity to that of lysine decarboxylase encoded by cadA at 93.7 min on the E. coli chromosome. In addition, the level of lysine decarboxylase activity increased in strains carrying multiple copies of the gene. Therefore, the gene encoding this lysine decarboxylase was designated Idc. Analysis of the lysine decarboxylase activity of strains containing cadA, ldc, or cadA ldc mutations indicated that ldc was weakly expressed under various conditions but is a functional gene in E. coli.  相似文献   

6.
Escherichia coli KK313, which was deficient in spermidine transport, was isolated by treatment of E. coli MA261 with N-methyl-N'-nitro-N-nitrosoguanidine. E. coli NH1596, which was deficient in spermidine transport and has a 90% decreased putrescine transport activity, was obtained by a second treatment of E. coli KK313 with the same mutagen. Genes for polyamine transport systems were isolated by transforming E. coli NH1596 through DNA fragments from E. coli DR112 using pACYC184 as a vector. One clone for the gene of protein(s) catalyzing both putrescine and spermidine uptake (pPT104) was isolated. Two clones for the genes of protein(s) catalyzing only putrescine uptake (pPT79 and pPT71) were obtained. The genes encoded by pPT104, pPT79, and pPT71 were mapped at 15, 19, and 16 min of E. coli chromosome, respectively. Spermidine uptake by NH1596 carrying pPT104, and by MA261, was not inhibited by putrescine and several polyamine analogues, and the Kt values of these two systems were both approximately 0.1 microM. Putrescine transport by NH1596 carrying pPT104 was inhibited completely by spermidine, N,N-dimethyl-4,4'-bipyridylium (paraquat), and N1-acetyl-spermidine, and the Kt value was 1.4 microM. Putrescine uptake by NH1596 carrying pPT79 or pPT71 was not inhibited by spermidine and several polyamine analogues, and the Kt values were 0.5 and 1.8 microM, respectively. In MA261, the putrescine uptake was inhibited by 25-35% by paraquat and N1-acetyl-polyamines and showed two Kt values, 0.5 and 1.5 microM. Based on these findings, the polyamine transport systems of E. coli are discussed.  相似文献   

7.
Putrescine has a negative effect on health and is also used as an indicator of quality on meat products. We investigated the genes involved in putrescine production by Serratia liquefaciens IFI65 isolated from a spoiled Spanish dry-cured ham. We report here the genetic organization of its ornithine decarboxylase encoding region. The 5506-bp DNA region showed the presence of three complete and two partial open reading frames. Putative functions have been assigned to several gene products by sequence comparison with proteins included in the databases. The second gene putatively coded for an ornithine decarboxylase. The functionality of this decarboxylase has been experimentally demonstrated by complementation to an E. coli defective mutant. Based on sequence comparisons of some enterobacterial ornithine decarboxylase regions, we have elaborated a hypothetical pathway for the acquisition of putrescine biosynthetic genes in some Enterobacteriaceae strains.  相似文献   

8.
The nucleotide sequence of the "high-affinity" L-arabinose transport operon has been determined 3' from the regulatory region and found to contain three open reading frames designated araF, araG and araH. The first gene 3' to the regulatory region, araF, encodes the 23-residue signal peptide and the 306-residue mature form of the L-arabinose binding protein (33,200 Mr). The binding protein, which has been described elsewhere, is hydrophilic, soluble and found in the periplasm of Escherichia coli. This gene is followed by an intragenic space of 72 nucleotides, which contains a region of dyad symmetry 23 nucleotides long capable of forming an 11-member stem-loop. The second gene, designated araG, contains an open reading frame capable of encoding an equally hydrophilic protein containing 504 residues (55,000 Mr). Following a 14-nucleotide spacer, which does not appear to have any secondary structure, the third open reading frame, herein designated araH, is capable of encoding a hydrophobic protein containing 329 residues (34,000 Mr) that can only be envisioned as having an integral membrane location. 3' to araH there is a T-rich region containing a 24-nucleotide area of dyad symmetry centered 55 nucleotides from the termination codon. Analysis of the derived primary sequences of the araG and araH products indicates the nature and potential features of these components. The araG protein was found to possess internal homology between its amino and carboxyl-terminal halves, suggesting a common origin. The araG gene product has been shown to be homologous to the rbsA gene product, the hisP product, the ptsB product and the malK product, all of which presumably play similar roles in their respective transport systems. Putative ATP binding sites are observed within the regions of homology. The araH gene product has been shown to be homologous to the rbsC gene product, which is the first observed homology between two purported membrane proteins.  相似文献   

9.
10.
Abstract A 2.5-kb Sca I fragment of the type 3 pneumococcal strain 406 DNA containing a 1425-nucleotide open reading frame ( gadA ) and encoding a 475-amino acid protein ( M rmr 54427) was characterised. The gene gadA was expressed in Salmonella typhimurium . Pulsed-field gel electrophoresis and Southern blotting analysis of DNAs prepared from several pneumococcal serotypes showed that only those clinical isolates belonging to serotype 3 harbour the gadA gene. Sequence comparison of GadA with proteins included in the data banks revealed the highest similarity with human glutamate decarboxylase (GAD65) (59% similarity, 28% identity). Auto-antibodies to GAD65 have been associated with the onset of insulin-dependent diabetes mellitus. Interestingly, several epitopes of GAD65 that have been identified as immunodominant are particularly well conserved in the pneumococcal GadA.  相似文献   

11.
A cDNA clone encoding the chicken liver cytochrome b5 was isolated by probing a library with synthetic oligonucleotides based on a partial amino acid sequence of the protein. Determination of the DNA sequence indicated a 414-nucleotide open reading frame which encodes a 138-amino acid residue polypeptide. The open reading frame contains 6 amino acids at the amino terminus which were not present on any of the cytochrome b5 polypeptides for which the amino acid sequence has been determined directly, suggesting that the protein is proteolytically processed to the mature form. The results of genomic Southern analysis were consistent with the presence of two structurally different genes in the chicken genome, raising the possibility that the soluble and membrane-bound forms of the protein are the products of separate genes.  相似文献   

12.
13.
Summary Arginine decarboxylase is the first enzyme in one of the two pathways of putrescine synthesis in plants. We purified arginine decarboxylase from oat leaves, obtained N-terminal amino acid sequence, and then used this information to isolate a cDNA encoding oat arginine decarboxylase. Comparison of the derived amino acid sequence with that of the arginine decarboxylase gene from Escherichia coli reveals several regions of sequence similarity which may play a role in enzyme function. The open reading frame (ORF) in the oat cDNA encodes a 66 kDa protein, but the arginine decarboxylase polypeptide that we purified has an apparent molecular weight of 24 kDa and is encoded in the carboxyl-terminal region of the ORF. A portion of the cDNA encoding this region was expressed in E. coli, and a polyclonal antibody was developed against the expressed polypeptide. The antibody detects 34 kDa and 24 kDa polypeptides on Western blots of oat leaf samples. Maturation of arginine decarboxylase in oats appears to include processing of a precursor protein.  相似文献   

14.
Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp.  相似文献   

15.
H Y Lung  A L Baetz    A B Peck 《Journal of bacteriology》1994,176(8):2468-2472
Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species by an activation-decarboxylation reaction which yields formate and CO2. oxc, the gene encoding the oxalic acid-degrading enzyme oxalyl-coenzyme A decarboxylase, was cloned from the bacterium Oxalobacter formigenes. The DNA sequence revealed a single open reading frame of 1,704 bp capable of encoding a 568-amino-acid protein with a molecular weight of 60,691. The identification of a presumed promoter region and a rho-independent termination sequence indicates that this gene is not part of a polycistronic operon. A PCR fragment encoding the open reading frame, when overexpressed in Escherichia coli, produced a product which cross-reacted antigenically with native enzyme on Western blots (immunoblots), appeared to form homodimers spontaneously, and exhibited enzymatic activity similar to that of the purified native enzyme.  相似文献   

16.
Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system.  相似文献   

17.
18.
AIMS: The production of putrescine is a relevant property related to food quality and safety. Morganella morganii is responsible for putrescine production in fresh fish decomposition. The aim of this study was to gain deeper insights into the genetic determinants for putrescine production in M. morganii. METHODS AND RESULTS: The 6972 bp DNA region showed the presence of three complete and two partial open reading frames all transcribed in the same direction. The second and third genes putatively coded for an ornithine decarboxylase (SpeF) and a putrescine-ornithine antiporter (PotE), respectively, and constituted an operon. The speF gene has been expressed in Escherichia coli HT414, an ornithine decarboxylase defective mutant, resulting in ornithine decarboxylase activity. The genetic organization of the SpeF-PotE-encoding region in M. morganii is different to that of E. coli and several Salmonella species. CONCLUSIONS: The speF gene cloned from M. morganii encodes a functional ornithine decarboxylase involved in putrescine production. Phylogenetic tree based on 16S rDNA showed that ornithine decarboxylase activity is not related to a specific phylogenetic tree branch in Enterobacteriaceae. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of the DNA region involved in putrescine production in M. morganii will allow additional research on their induction and regulation in order to minimize putrescine production in foods.  相似文献   

19.
A plasmid clone expressing a beta(1,4)-glucan glucanohydrolase (EC 3.2.1.4; endoglucanase) in Escherichia coli was isolated from a genomic library of Erwinia carotovora subsp. carotovora. The DNA segment carrying the corresponding structural gene, named celS, contained an open reading frame encoding a 264-amino acid (aa) polypeptide. The N-terminal aa sequence of CelS showed that the protein was synthesized with a 32-aa cleavable signal peptide. The mature 232-aa CelS had a calculated Mr of 26,228 and pI of 5.5. The pH optimum was about 6.8 and the temperature optimum was between 45 and 55 degrees C. Comparison of the aa sequence of CelS by hydrophobic cluster analysis with a range of cellulases and other quasi-isofunctional enzymes revealed only very limited sequence similarities, suggesting that the CelS protein may represent the first member of an additional cellulase family.  相似文献   

20.
Carrot (Daucus carota L.) cells were transformed with Agrobacterium tumefaciens strains containing 3[prime]-truncated mouse ornithine decarboxylase (ODC) cDNA under the control of a cauliflower mosaic virus 35S promoter. A neomycin phosphotransferase gene linked with a nopaline synthase promoter was used to select transformed cell lines on kanamycin. Although the nontransformed cells contained no ODC, high amounts of mouse-specific ODC activity were observed in the transformed cells. Transgenic cells showed a significant increase in the cellular content of putrescine compared to control cells. Spermidine, however, remained unaffected. Not only did the transformed cells exhibit improved somatic embryogenesis in the auxin-free medium, they also regenerated some embryos in the presence of inhibitory concentrations of 2,4-dichlorophenoxyacetic acid. These cells acquired tolerance to [alpha]-difluoromethylarginine (a potent inhibitor of arginine decarboxylase) at concentrations that inhibit growth as well as embryogenesis in nontransformed carrot cells, showing that the mouse ODC can replace the carrot arginine decarboxylase for putrescine biosynthesis in the transgenic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号