首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
昆虫单眼的结构和功能   总被引:1,自引:0,他引:1  
刘红霞  彩万志 《昆虫知识》2007,44(4):603-607
大多数昆虫的视觉器官除了复眼外还有一些简单的小眼,称为单眼。昆虫成虫和半变态类若虫的单眼称为背单眼,位于头顶两复眼之间。背单眼在数目和结构上都有较大变化,但基本结构包括角膜晶体、一层角膜生成细胞(覆盖在角膜晶体上)、视网膜(由大约1000个感光细胞构成,视类群而不同)。背单眼对弱光比较敏感,但在图像感知方面的作用并不显著;它是一种“激发器官”,可以增加复眼的感知能力。全变态昆虫的幼虫既没有复眼也没有背单眼,但在其头部两侧有些类似复眼小眼的侧单眼。侧单眼的结构也与小眼相似,包括角膜,晶体和由一些视网膜细胞组成的视杆。侧单眼是完全变态类昆虫幼虫仅有的感光器官,与复眼一样,它们可以感知颜色、形状、距离等等。  相似文献   

2.
The dorsal ocelli of bibionid flies, details of which have not previously been described, were examined in males of Dilophus febrilis. The three ocelli are combined within an elevated chitin capsule, in a medial position between the enlarged dorsal compound eyes. The biconvex lenses show a multiple layering of up to 150 regularly spaced, clear and dense cuticle zones (100 nm spacing) which probably provide some spectral filtering, suggested by in vivo observations with an epifluorescence microscope. The corneagenous cells and the retina with 100-200 photoreceptor cells are adjoined proximally. A distal retina zone comprises the rhabdoms, which are laterally connected in an hexagonal network. The rhabdoms are between 4 and 15 mum in length; they decrease gradually from the dorsal to the ventral retina region. A middle retina zone comprises the receptor somata, a proximal zone, their axons. Synaptic contacts between axons and interneuron dendrites, feedback synapses to axons, and axo-axonic synapses are found, showing varying pre-synaptic structures. A possible functional role of the ocelli is discussed.  相似文献   

3.
The lateral ocelli of Scolopendra cingulata and Scolopendra oraniensis were examined by electron microscopy. A pigmented ocellar field with four eyes arranged in a rhomboid configuration is present frontolaterally on both sides of the head. Each lateral ocellus is cup-shaped and consists of a deeply set biconvex corneal lens, which is formed by 230–2,240 cornea-secreting epithelial cells. A crystalline cone is not developed. Two kinds of photoreceptive cells are present in the retinula. 561–1,026 cylindrical retinula cells with circumapically developed microvilli form a large distal rhabdom. Arranged in 13–18 horizontal rings, the distal retinula cells display a multilayered appearance. Each cell layer forms an axial ring of maximally 75 rhabdomeres. In addition, 71–127 club-shaped proximal retinula cells make up uni- or bidirectional rhabdomeres, whose microvilli interdigitate. 150–250 sheath cells are located at the periphery of the eye. Radial sheath cell processes encompass the soma of all retinula cells. Outside the eye cup there are several thin layers of external pigment cells, which not only ensheath the ocelli but also underlie the entire ocellar field, causing its darkly pigmented. The cornea-secreting epithelial cells, sheath cells and external pigment cells form a part of the basal matrix extending around the entire eye cup. Scolopendromorph lateral ocelli differ remarkably with respect to the eyes of other chilopods. The dual type retinula in scolopendromorph eyes supports the hypothesis of its homology with scutigeromorph ommatidia. Other features (e.g. cup-shaped profile of the eye, horizontally multilayered distal retinula cells, interdigitating proximal rhabdomeres, lack of a crystalline cone, presence of external pigment and sheath cells enveloping the entire retinula) do not have any equivalents in scutigeromorph ommatidia and would, therefore, not directly support homology. In fact, most of them (except the external pigment cells) might be interpreted as autapomorphies defining the Pleurostigmophora. Certain structures (e.g. sheath cells, interdigitating proximal rhabdomeres, discontinuous layer of cornea-secreting epithelial cells) are similar to those found in some lithobiid ocelli (e.g. Lithobius). The external pigment cells in Scolopendra species, however, must presently be regarded as an autapomorphy of the Scolopendromorpha.  相似文献   

4.
We have re-investigated the organization of ocelli in honeybee workers and drones. Ocellar lenses are divided into a dorsal and a ventral part by a cusp-shaped indentation. The retina is also divided, with a ventral retina looking skywards and a dorsal retina looking at the horizon. The focal plane of lenses lies behind the retina in lateral ocelli, but within the dorsal retina in the median ocellus of both workers and drones. Ventral retinula cells are ca. 25 μm long with dense screening pigments. Dorsal retinula cells are ca. 60 μm long with sparse pigmentation mainly restricted to their proximal parts. Pairs of retinula cells form flat, non-twisting rhabdom sheets with elongated, straight, rectangular cross-sections, on average 8.7 μm long and 1 μm wide. Honeybee ocellar rhabdoms have shorter and straighter cross-sections than those recently described in the night-active bee Megalopta genalis. Across the retina, rhabdoms form a fan-shaped pattern of orientations. In each ocellus, ventral and dorsal retinula cell axons project into two separate neuropils, converging on few large neurons in the dorsal, and on many small neurons in the ventral neuropil. The divided nature of the ocelli, together with the particular construction and arrangement of rhabdoms, suggest that ocelli are not only involved in attitude control, but might also provide skylight polarization compass information.  相似文献   

5.
The morphology and fine structure of the ocelli of Triatoma infestans have been analyzed by means of light and electron microscopy. The two dorsal ocelli of this species are located behind the compound eyes, looking dorsally and frontally. Externally, the ocelli are marked by the corneal lenses virtually spherical in form and limited internally by a cuticular apodeme. The lens focuses the incoming rays beyond the retina. A single layer of corneagen cells lies below the cuticular lens. The corneagen cells and photoreceptors are arranged in a cup-like fashion beneath the cuticular lens. A distal retinal zone comprises the rhabdoms, which are laterally connected in an hexagonal meshwork. A middle retinal zone comprises the receptor cell segment free of rhabdom, and a proximal zone their axons. In the middle zone, the oviform nuclei and spheroids are located. Screening pigment granules are present within the retinal cell. Spherical mitochondria are homogeneously distributed in the cytoplasm of the cell body. In the axonal zone, mitochondria are found in the peripheral region. Axons from receptor cells extend into the ocellar neuropile at the base of the ocelli, to synapse with second order neurons. The large axons of second order neurons are bundled by glial cells. The ocellar plexus exhibits a high diversity of synaptic unions (i.e. axo-dendritic, axo-axonic, dendro-axonic, and dendro-dendritic).  相似文献   

6.
7.
Summary The maintenance of photoreceptor cell membranes in the blowfly was investigated in relation to the diurnal cycle, age, and therpa (receptor potential absent) phototransduction mutation. The effect of disturbed membrane assembly on the electrical membrane properties was examined using single-electrode discontinuous current-clamp techniques. In wild-type flies the cross-sectional dimensions of the rhabdomeres were markedly reduced with age, and the quantity of synthetic organelles decreased concurrently, whereas no correlation was found between the diurnal cycle and membrane turnover. Therpa mutation is thought to block the visual transduction cascade in photoreceptor cells and to lead to degeneration of the photoreceptor cell bodies. The volume of rhabdomeres decreased markedly inrpa mutants and the quantity of synthetic organelles was reduced significantly, indicating an imbalance between photoreceptive membrane renewal and degradation. Also, the plasma membrane underwent degenerative changes. The passive electrical properties of photoreceptor cells — resting membrane voltages and input resistances — were only slightly changed from those of wild-type flies, although the photoreceptive membrane did not depolarize in response to light. This indicates no apparent disturbance in the function of the ionic channels in these membranes. Taken together, these results suggest that the photoreceptor cells need a functional phototransduction cascade with its feedback controls to maintain continuous renewal of rhabdomeres, but that the plasma membrane maintains its normal electrochemical properties despite extreme morphological degeneration of photoreceptor cell.  相似文献   

8.
Only few electron microscopic studies exist on the structure of the main eyes (anterior median eyes, AME) of web spiders. The present paper provides details on the anatomy of the AME in the funnel-web spider Agelena labyrinthica. The retina consists of two separate regions with differently arranged photoreceptor cells. Its central part has sensory cells with rhabdomeres on 2, 3, or 4 sides, whereas those of the ventral retina have only two rhabdomeres on opposite sides. In addition, the rhabdomeres of the ventral retina are arranged in a specific way: Whereas in the most ventral part they form long tangential rows, those towards the center are detached and are arranged radially. All sensory cells are wrapped by unpigmented pigment cell processes. In agelenid spiders the axons of the sensory cells exit from the middle of the cell body; their fine structure and course through the eye cup is described in detail. In the central part of the retina efferent nerve fibres were found forming synapses along the distal region of the receptor cells. A muscle is attached laterally to each eye cup that allows mainly rotational movements of the eyes. The optical performance (image resolution) of these main eyes with relatively few visual cells is discussed.  相似文献   

9.
Thomas Spies 《Zoomorphology》1981,98(3):241-260
Summary The structural organization of the ocelli of several diplopod species has been studied by means of electron microscopy. The results provide evidence that diplopodan ocelli are derived from typical mandibulate ommatidia, which consequently had been present in diplopod ancestors. The recent representatives of the two sister groups, Pselaphognatha and Chilognatha are characterized by two essentially different types of eye morphology: The eyes of the Pselaphognatha comprise a bilayered rhabdom (built up by 3+4 retinular cells), a few corneagenous cells, a corneal lens, and two vitreous bodies. The latter probably represent relics of a former crystalline cone. On the contrary, the ocelli of the Chilognatha consist of a multilayered rhabdom (built up by a large number of retinular cells), numerous corneagenous cells, and a corneal lens. The dioptric apparatus lacks a crystalline cone. Further structural elements, the distribution of which varies, are the covering cells and processes of hypodermal cells which contain screening pigments. Whereas the eye of the Pselaphognatha can be traced back to a single ommatidium, the ocellus of the Chilognatha can only be interpreted as a merging product of several associated ommatidia or as the result of multiplication and rearrangement of former ommatidial elements. This concept is substantiated by analogous phenomena which occur within other arthropod groups and thus serve as models for the phylogeny of the diplopodan eyes. The comparison of the morphology and the ecology of palaeozoic and recent diplopods demonstrates that the disintegration of former facetted eyes and the modification of ommatidia were induced by the adaptation to cryptic modes of life.  相似文献   

10.
Abstract. No morphological clues on the amphipod head indicate the existence of ocelli. However, as in several isopod species studied so far, two rudimentary photoreceptors are integrated into the medio-dorsal part of the brain. This electron microscopical study of the photoreceptors is the first report on the presence of ocelli in amphipods. Each ocellus is made up of 3 receptor cells which contribute to the formation of a photoreceptive surface (the rhabdom) formed by tightly packed microvilli. The rhabdoms are twisted and irregular in outline. Membrane turnover is suggested by the presence of different kinds of lysosomes. Lacking dioptric lenses, these photoreceptors are not likely to be involved in image formation but may function as appraisers of ambient light intensity. Physiological and behavioral studies will, henceforth, have to take into account these unexpected ocelli, which may represent remnants of the naupliar eye.  相似文献   

11.
1. Properties of median photoreceptor cells in cultured ocelli from the giant barnacle (Balanus nubilus) were compared in isolated ocelli, ocelli maintained with the supraesophageal ganglion, and fresh ocelli. 2. Cultured photoreceptor cells exhibited slight deterioration after 2-4 weeks. Cell bodies maintained their structure but apparently lost some dendrites. Electron micrographs revealed fewer rhabdomeres. Axons did not degenerate. 3. Intracellularly recorded responses to light in both cultured preparations were qualitatively normal with a small decrease in sensitivity and increase in input resistance. The waveforms of the light responses were normal. 4. The characteristic shadow reflex was maintained after 6 weeks.  相似文献   

12.
We study the extent to which the lateral ocelli of dragonflies are able to resolve and map spatial information, following the recent finding that the median ocellus is adapted for spatial resolution around the horizon. Physiological optics are investigated by the hanging-drop technique and related to morphology as determined by sectioning and three-dimensional reconstruction. L-neuron morphology and physiology are investigated by intracellular electrophysiology, white noise analysis and iontophoretic dye injection. The lateral ocellar lens consists of a strongly curved outer surface, and two distinct inner surfaces that separate the retina into dorsal and ventral components. The focal plane lies within the dorsal retina but proximal to the ventral retina. Three identified L-neurons innervate the dorsal retina and extend the one-dimensional mapping arrangement of median ocellar L-neurons, with fields of view that are directed at the horizon. One further L-neuron innervates the ventral retina and is adapted for wide-field intensity summation. In both median and lateral ocelli, a distinct subclass of descending L-neuron carries multi-sensory information via graded and regenerative potentials. Dragonfly ocelli are adapted for high sensitivity as well as a modicum of resolution, especially in elevation, suggesting a role for attitude stabilisation by localization of the horizon.  相似文献   

13.
The central rhabdomeres in the retina of the blowfly Calliphora erythrocephala and the house fly Musca domestica are not structurally uniform. In Calliphora, four classes of central rhabdomeres were found; they are formed by a total of seven types of central visual cells, clearly distinguished by the following structural features: length of the rhabdomeres R7 or R8, position of the nucleus, rhabdomere twist, fine structure in the R7/R8 transition region, and cross-sectional area of the rhabdomeres. In the lateral part of the eye only the most common central-rhabdomere class, ‘sl.’ is present, whereas in the frontal and dorsal parts classes ‘sl’ and ‘ls’ are found in a particular numerical ratio. Near the frontal eye margin the rare class ‘per’ also appears, with two separate rhabdomeres, R7per and R8s; the morphological properties of R7per are midway between those of peripheral and central visual cells. The special ommatidia at the dorsal margin of the eye are characterized by the central rhabdomeres ‘marg’. The known functional properties of the visual cells in the fly eye can be readily assigned to these classes (Table 1, Fig. 12). The non-uniform distribution of the various kinds of central rhabdomeres suggests functional differentiation of the eye region.  相似文献   

14.
Heterotrimeric GTP-binding proteins (G proteins) play an important role in phototransduction. The presence of G-protein subclasses has been reported in photoreceptive membranes, e.g., the Gi subgroup (transducin) in vertebrate rods, and the Gq subgroup in the eyes of the Arthropoda and the Mollusca. We examined the immunoreactivity and distribution of a Gq homologue in the cerebral ocelli of Perinereis brevicirris (Polychaeta, Annelida) using an anti-GqC antibody raised against a conserved sequence at the C-terminal of the alpha-subunit of Gq (Gq-alpha). The anti-GqC antibody labeled a 48-kDa band on the Western blot of proteins from the Perinereis ocelli. The anti-GtC antibody, which is raised against the C-terminal sequence of bovine transducin alpha-subunit (Gt-alpha), did not cross-react to the ocellar proteins of Perinereis. The rhabdomeric layers of the anterior and posterior ocelli were strongly labeled by anti-GqC on light-microscopic immunohistology. Immunoelectron microscopy showed that the Gq molecules were specifically localized in the photoreceptive membrane of the rhabdomeric microvilli. These results suggest that the Gq protein plays a role in the phototransduction of the Perinereis ocelli.  相似文献   

15.
冷雪  谢璐  那杰 《昆虫知识》2009,46(5):815-818
蟋蟀视觉系统由单眼、复眼、视叶三部分组成。蟋蟀的单眼为背单眼,由角膜、角膜生成细胞、视网膜等组成,是提高昆虫复眼所感知的视觉刺激的兴奋水平部位;复眼是最主要的视觉器官,由角膜、晶锥、感杆束和网膜细胞、基膜组成,是光电转导和视觉级联反应的中心;视叶由神经节层、外髓和内髓组成,是视觉神经系统的中心。  相似文献   

16.
李兆英 《昆虫知识》2012,49(5):1176-1181
本研究通过形态解剖和BrdU免疫组织化学方法对东方蜜蜂Apis cerana Fabricius背单眼的胚后发育过程进行了比较研究,结果表明:东方蜜蜂的每一个背单眼都包括角膜晶体、角膜生成细胞、小网膜细胞以及后部的单眼神经。蜜蜂的背单眼起源自头壳上皮;其胚后发育的高峰期集中在蛹发育的前3d;其新细胞主要来源于上皮细胞和圆锥形单眼囊周围细胞的有丝分裂;单眼同脑的联系在P1期前后就已经建立;角膜晶体的形成在P5以后。说明单眼的结构和发育同其功能密切相关。  相似文献   

17.
We examined the fine structure of dorsal rim ommatidia of the compound eye of Pararge aegeria (Lepidoptera: Satyridae) and compared them with ommatidia of the large dorsal region described by Riesenberg (1983 Diploma, University of Munich). 1. The ommatidia of the dorsal rim show morphological specializations known to be typical of the perception of polarized light: (a) the dumb-bell-shaped rhabdoms contain linearly aligned rhabdomeres with only 2 orthogonally arranged microvilli orientations. The rhabdoms are composed of the rhabdomeres of 9 receptor cells, 8 of which are radially arranged. The rhabdomeres of receptor cells VI and V5, as well as D2, D4, D6 and D8 are dorsoventrally aligned, whereas the rhabdomeres of the cells H3 and H7 are perpendicular to them. The rhabdomere of the bilobed 9th retinula cell lies basally and is dorsoventrally aligned, where retinula cell VI and V5 are already axonal. (b) There is no rhabdomeric twist, and (c) the rhabdoms are rather short. 2. However, in the ommatidia of the large dorsal region, only 2 retinula cells (H3 and H7) are suitable for perception of polarized light. 3. Lucifer yellow and horse radish peroxidase were used as tracers to visualize the projections of retinula cell axons of the dorsal rim area and the large dorsal region into the optic neuropils (lamina and medulla). Two receptors (VI and V5) from both the dorsal rim area and the large dorsal region, have long visual fibres projecting into the medulla. The 7 remaining retinula cells of both eye regions, including those that meet the structural requirements for detection of polarized light in the large dorsal region, terminate in the lamina (short visual fibres). These results provide a starting point for further studies to reveal the possible neuronal pathways by which polarized light may be processed.  相似文献   

18.
The positive interspecific abundance–occupancy relationship is one of the most general patterns in ecology. Positive intra specific relationships should also exist within species over time, and so a species should occupy more sites in years when it is more abundant. However, positive intraspecific relationships are not as ubiquitous as their interspecific counterparts. It has been hypothesized that low levels of temporal variation and time-lags between changes of abundance and occupancy within species make positive intraspecific relationships difficult to detect. We analyse 31 years of U.K.-wide data on the decline of an arctiid moth, Arctia caja , which provides the first empirical demonstration of an abundance–occupancy time-lag for any species. Such time-lags are probably common and we discuss their impact on the intraspecific abundance–occupancy relationship and their implications for conservation management. In A. caja , the time-lag indicates that the decline of the species is probably not driven by habitat loss.  相似文献   

19.
Hundreds of ocelli are embedded in the dorsal shell plates of certain chitons. These ocelli each contain a pigment layer, retina, and lens, but it is unknown whether they provide chitons with spatial vision. It is also unclear whether chiton lenses are made from proteins, like nearly all biological lenses, or from some other material. Electron probe X-ray microanalysis and X-ray diffraction revealed that the chiton Acanthopleura granulata has the first aragonite lenses ever discovered. We found that these lenses allow A. granulata's ocelli to function as small camera eyes with an angular resolution of about 9°-12°. Animals responded to the sudden appearance of black, overhead circles with an angular size of 9°, but not to equivalent, uniform decreases in the downwelling irradiance. Our behavioral estimates of angular resolution were consistent with estimates derived from focal length and receptor spacing within the A. granulata eye. Behavioral trials further indicated that A. granulata's eyes provide the same angular resolution in both air and water. We propose that one of the two refractive indices of the birefringent chiton lens places a focused image on the retina in air, whereas the other does so in water.  相似文献   

20.
 The inverse cerebral ocelli of the pelagosphera larva of Golfingia misakiana and of another unidentified larva are composed of two or three sensory cells and one supportive pigmented cell. The sensory cells bear an array of microvilli as well as a single cilium with poor undulation of its membrane; the photoreceptive organelles are regarded as the rhabdomeric type. A striking feature of these cells is the cores, which extend within the microvilli from the tip into the midregion of the cell. It is suggested that these structures are identical with the submicrovillar cisternae found in the cerebral inverse eyes of larvae of Polychaeta. The findings allow the conclusion that in the pelagosphera of the Sipuncula, contrary to the teleplanic veliger larvae of Gastropoda, a lengthy pelagic cycle is not correlated with the development of a ciliary photoreceptor. Additionally, it is assumed that the pigment cup ocelli in larvae of Sipuncula are homologous with the cerebral inverted pigment cup ocelli of larvae of Polychaeta. Accepted: 19 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号