首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Cheese is one of the dairy products that can result from the enzymatic coagulation of milk. The basic steps of the transformation of milk into cheese are coagulation, draining, and ripening. Ripening is the complex process required for the development of a cheese's flavor, texture and aroma. Proteolysis, lipolysis and glycolysis are the three main biochemical reactions that are responsible for the basic changes during the maturation period. As ripening is a relatively expensive process for the cheese industry, reducing maturation time without destroying the quality of the ripened cheese has economic and technological benefits. Elevated ripening temperatures, addition of enzymes, addition of cheese slurry, attenuated starters, adjunct cultures, genetically engineered starters and recombinant enzymes and microencapsulation of ripening enzymes are traditional and modern methods used to accelerate cheese ripening. In this context, an up to date review of Cheddar cheese ripening is presented.  相似文献   

2.
Acceleration of cheese ripening   总被引:14,自引:0,他引:14  
The characteristic aroma, flavour and texture of cheese develop during ripening of the cheese curd through the action of numerous enzymes derived from the cheese milk, the coagulant, starter and non-starter bacteria. Ripening is a slow and consequently an expensive process that is not fully predictable or controllable. Consequently, there are economic and possibly technological incentives to accelerate ripening. The principal methods by which this may be achieved are: an elevated ripening temperature, modified starters, exogenous enzymes and cheese slurries. The advantages, limitations, technical feasibility and commercial potential of these methods are discussed and compared.  相似文献   

3.
The aim of this work was to describe the yeast populations present during the manufacturing of Minas cheese of the region of Serra da Canastra, Minas Gerais state, Brazil. Canastra cheese is produced from raw cow’s milk at the farmhouse level using artisanal procedures and natural whey cultures as starters. Samples from 10 farms were studied, and they included: raw milk, natural starter, cheese curd before salting and cheese after 5 days of ripening. The most frequent yeasts in whey, curd and cheese were Debaryomyces hansenii, Kluyveromyces lactis, Kodamaea ohmeri and Torulaspora delbrueckii. Many yeast isolates were able to produce proteases, lipases and β-galactosidades. Production of these enzymes by yeasts in the cheese would contribute to the development of the characteristic flavor and smell during the ripening process.  相似文献   

4.
Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.  相似文献   

5.
Aim:  To investigate the presence of biogenic amines (BAs) in Montasio cheese produced by using different cheese manufacturing practices.
Methods and Results:  Three batches of Montasio cheese were made in the following way: batch A using raw milk and natural milk culture, batch B with thermized milk and natural milk culture and batch C with thermized milk and natural milk culture added of a commercial starter culture. During 120 days of ripening analyses were performed for microbial counts and BA content; indeed, the potential to produce BAs was screened in lactic acid bacteria and Enterobacteriaceae isolates. At the end of ripening, the total BA contents of cheeses from batches A, B and C were 166·3, 207·3 and 29·8 mg kg−1, respectively. Amino acid decarboxylase activity was widespread among isolates.
Conclusions:  The BA content of Montasio cheese from the three batches was below the threshold proposed as potentially toxic. The highest BA content was found in cheese produced using thermized milk and natural milk culture; therefore, the thermal treatment of milk was not enough by itself to reduce the counts of decarboxylase-positive bacteria in cheese. The use of selected starters guaranteed a low BA content in Montasio cheese.
Significance and Impact of the Study:  The study of the effects of some technological processes on the incidence of decarboxylative microbiota in 'protected denomination of origin' cheeses could provide useful information on the hygienic risk related to their production.  相似文献   

6.
The characteristic flavor of hard Italian cheeses is associated with the presence of fatty acids, particularly butyric acid, liberated from milk fat during the ripening process. To ensure proper development and control of flavor, animal pregastric esterases or lipases are routinely added to the milk before coagulation of the curd. Such esterases are also used to generate flavor in enzyme modified cheese and other dairy products. Esterases from microbial sources have been investigated as agents to enhance flavor in cheese. We have found that an esterase from Mucor miehei exhibits the type of lipolytic activity needed for this application. Romano and fontina cheeses of excellent quality have been prepared by the use of this esterase. It has also been used successfully in the preparation of enzyme modified cheese, and, in turn, processed American cheese.  相似文献   

7.
Use of thermophilic lactic starters in the dairy industry   总被引:2,自引:0,他引:2  
The use of thermophilic lactic starters in the dairy industry is discussed. The functions of the thermophilic lactic starters in cooked cheese production and its ripening, the bacteria of the starter cultures and various types of starters are described.  相似文献   

8.
AIMS: To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. METHODS AND RESULTS: The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. CONCLUSIONS: These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.  相似文献   

9.
The major function of lactic starter cultures in cheese making is to produce lactic and other organic acids from the carbohydrates present in milk. The activity of six starter cultures consisting of two Lactococcus lactis ssp. lactis , two Lactococcus lactis ssp. lactis biovar. diacetylactis and two Leuconostoc strains, was tested by monitoring the evolution of the organic acid composition of milk by a modified HPLC method. In addition, their performance as cheese starters was also tested. The HPLC method developed proved to be a precise tool to monitor the organic acid content. Thus, it can be used to follow the fermentation ability of starter cultures, providing information about the type of fermentation. The use of any of the six starters assayed is suggested for manufacturing Afuega'l Pitu cheese.  相似文献   

10.
In the course of screening tests of Basidiomycete proteolytic enzymes, it was observed that some strains produced milk clotting enzymes with fairly weak proteolytic activities.

When sucrose-polypeptone and sucrose-corn steep liquor media were used, only 6 strains out of 44 strains tested showed weak milk clotting activities. Cheddar cheese making with culture filtrates of these 6 strains revealed that the culture filtrates of 2 strains, Irpex lacteus Fr. and Fomitopsis pinicola (Fr.) Karst., were able to produce Cheddar cheese of good quality.

On the other hand, when sucrose-distillers solubles media were used, a lot of strains showed high proteolytic activity in addition to high milk clotting activity. The ratio of milk clotting to proteolytic activities (MCA/PA) was assumed to be an important index for the selection of organism, and F. pinicola and Coriolus consors (Berk.) Imaz. were selected as the strain with high MCA/PA ratio.

As the investigation on culture conditions of 3 strains mentioned above showed that F. pinicola and I. lacteus, were richly productive of milk clotting enzymes, the 2 strains except C. consors were used for further studies on cheese making.

Cheddar cheese making with crude enzymes revealed that cheese products produced by the enzyme of F. pinicola had a slightly bitter taste after 5 months’ ripening but that those produced by the enzyme of I. lacteus had good quality.  相似文献   

11.
Growth of Enterobacteriaceae, coliforms and faecal coliforms in Manchego cheese during the first 24 h after manufacture was retarded by treatment of milk with 0.1 g 1-1 H2O2 compared to growth in control cheese made from untreated milk. Moreover, the decrease in their numbers during cheese ripening was accelerated by the H2O2 treatment of milk. In contrast, KNO3 or KNO2 addition to milk enhanced the growth of these micro-organisms during cheese manufacture and favoured their survival during ripening.  相似文献   

12.
AIMS: The study evaluated the efficacy of four Mycobacterium avium subsp. paratuberculosis (MAP) culture media in suppressing commonly used starter cultures and typical nonstarter microflora present during the manufacture and ripening of Cheddar cheese, with a view to identify a suitable medium for the enumeration of MAP during laboratory-scale Cheddar production. METHODS AND RESULTS: Four Cheddar starter cultures and Cheddar cheese manufactured with these starters were inoculated onto Herrold's egg yolk medium (HEYM); HEYM supplemented with vancomycin, amphotericin B and nalidixic acid (HEYM/VAN); Middlebrook 7H10 agar containing polymyxin, amphotericin B, nalidixic acid, trimethoprim and azlocillin (PANTA) antibiotic supplement; and BACTEC 12B radiometric medium with and without a preliminary decontamination step (0.75% w/v hexadecylpyridinium chloride (HPC), 5 h). The inclusion of a decontamination step inhibited all Cheddar cheese starter and nonstarter micro-organisms. The medium 7H10/PANTA and to a lesser extent HEYM/VAN were effective inhibitors of cheese microflora when no decontamination step was employed. CONCLUSIONS: Middlebrook 7H10 medium, supplemented with PANTA antibiotics, suppressed all micro-organisms associated with ripening Cheddar cheese manufactured with pasteurized milk. SIGNIFICANCE AND IMPACT OF THE STUDY: A MAP culture medium has been identified, which may be used to enumerate this bacterium during the laboratory manufacture and ripening of Cheddar cheese and hence facilitate further research into the persistence of this pathogen in the product.  相似文献   

13.
The role of lactic acid bacteria in accelerated cheese ripening   总被引:4,自引:0,他引:4  
Abstract: The ripening of cheese is a slow and consequently an expensive process. The economic advantage of rapid development of more intense cheese flavour in shorter periods of time would be substantial. Lactic acid bacteria play a key role during ripening and can therefore be used as accelerating agents. This review describes the different strategies where lactic acid bacteria or their enzymes were used to reduce the ripening time of cheese. The advantages, limitations and technical feasibility as well as the commercial potential of the different approaches are also considered.  相似文献   

14.
In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening.  相似文献   

15.
Immobilization of milk-clotting proteases   总被引:1,自引:0,他引:1  
Traditionally, cheese manufacturing is a batch process and current practice is to use a milk-clotting enzyme in a soluble form. Immobilization of proteases for milk coagulation has received renewed interest and potential applications have recently been reported. Use of immobilized proteases would permit renneting of milk as a continuous process. In addition, it should be possible to recover and re-use the enzyme for coagulation of further batches of milk. This review elaborates on the recent developments in the area of immobilized proteases and their application in cheese-making.Paper No. 7334 through the Experiment Station, G.B. Pant University of Agriculture & Technology, Pantnagar-263 145, India.  相似文献   

16.
Proteolytic enzymes of dairy starter cultures   总被引:7,自引:0,他引:7  
Abstract The synthesis of proteolytic enzymes by starter bacteria is a fundamental requirement for rapid acid production in milk fermentations. These organisms possess a number of proteinases and peptidases which act in concert to hydrolyse milk protein to the free amino acids required for cell growth. The same enzymes have an important secondary role in cheese ripening contributing to rheological and organoleptic changes. A highly complex mixture of both enzymes and substrates is present. The strategic location of these enzymes, in the cell wall and membrane structures and in the cytoplasm, governs enzyme access to the substrates and is central to both roles. An overview of the above topics is presented.  相似文献   

17.
Grana Padano (GP) is a Protected Designation of Origin cheese made with raw milk and natural whey culture (NWC) that is characterised by a long ripening period. In this study, six GP productions were considered in order to evaluate the trend of microbial dynamics and compare lactic acid bacteria (LAB) population levels in cheeses during the entire cheese-making process. To reach this goal, for each GP production, samples of vat raw milk, NWC and cheeses at 48 h, 2, 6, 9 and 13 months were subjected to plate counts and direct counts by fluorescence microscopy, as well as amplicon length heterogeneity-PCR (LH-PCR). Statistical analysis was applied to the results and ecological indices were estimated. It was demonstrated that the LAB able to grow in the cheese-environment conditions could arise from both raw milk and NWC. Starter lactobacilli (SLAB) from NWC were the main species present during acidification, and non-starter LAB (NSLAB), mainly from milk but also from NWC, were able to grow after brining and they dominated during ripening. The peak areas of LH-PCR profiles were used to determine ecological indices during manufacture and ripening. Among cheese ecosystems with different ageing times, diversity, Evenness and Richness were different, with highest bacterial growth and diversity occurring in cheese ripening at 2 months. At this time point, which seemed to be a crucial moment for GP microbial evolution, cell lysis of both SLAB and NSLAB was also observed.  相似文献   

18.
M P Ryan  M C Rea  C Hill    R P Ross 《Applied microbiology》1996,62(2):612-619
Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products.  相似文献   

19.
The susceptibility of 13 amine-forming lactobacilli to several bacteriocins was investigated by an agar diffusion assay. All strains were susceptible to nisin and to five bacteriocins of enterococcal origin. Pediocin PA-1, bavaricin A, lactococcin A, and a bacteriocin from Enterococcus faecalis 1061 did not show inhibitory activity. Two bacteriocin-producing enterococci and a nisin-producing Lactococcus lactis strain were employed as starters in separate cheese-making experiments. Outgrowth of histamine producer Lactobacillus buchneri St2A, which was added to the milk at levels of up to 190 CFU/ml, was almost completely inhibited. No histamine formation was detected in the cheeses made with bacteriocin-producing starters. In the control cheese without bacteriocin, St2A reached levels of 1.1 x 10(sup8) CFU/g, and 200 mg of histamine per kg was found after 4 months of ripening. To our knowledge, this is the first report of bacteriocin-mediated inhibition of histamine formation in foods.  相似文献   

20.
Manchego cheese is a high-fat pressed ewe's-milk cheese made in Castilla-La Mancha (Spain) and produced by enzymatic coagulation. The minimum ripening time before marketing required by the Regulatory Board of the Manchego Cheese Appellation of Origin is 60 days.
This paper describes the physicochemical, proteolysis, sensory and texture characteristics of Manchego cheese, and the degree of homogeneity of cheeses made under the Manchego Appellation of Origin. The data gathered in this study indicate that sensory and instrumental analysis are useful tools for detecting changes in Manchego cheese during ripening. These changes were first detected by the instrumental analysis (2 months). The panelists detected differences after 4 months' ripening in all the factories. With physicochemical analysis, on the other hand, longer ripening times (6–8 months) are required before such changes become appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号