首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon flow in the littoral food web of an oligotrophic lake   总被引:6,自引:3,他引:3  
James  Mark R.  Hawes  Ian  Weatherhead  Mark  Stanger  Carmen  Gibbs  Max 《Hydrobiologia》2000,441(1):93-106
Benthic food web dynamics and carbon flow were examined in the littoral zone of Lake Coleridge, a large deep oligotrophic lake, using radioactive and stable isotope techniques in conjunction with analyses of stomach contents of the fauna. We specifically address two hypotheses: (1) that macrophytes only contribute to the carbon flow to higher trophic levels when they have decayed; and (2) that epiphytic algae is the major source of carbon for macroinvertebrates, and thus fish, with only minor contributions from phytoplankton or terrestrial sources. Epiphytic diatoms were a major component of the stomach contents of the gastropod snail Potamopyrgus antipodarum, and of chironomids. Animal remains were also common in the diet of some chironomids, while amorphous organic matter predominated in the stomachs of oligochaetes. A variety of epiphytic algal taxa was found in trichopteran larvae. Feeding rate of P. antipodarum measured with radioactive tracers increased by 10× on decayed macrophytes (Elodea) compared with live material, while feeding rates on characean algae increased by a factor of 3 when decayed material was presented. However, assimilation rates were less than 20% on decayed material compared with 48–52% on live material. Potential carbon sources were easily distinguished based on their 13C values, although isotopic ratios showed significant variation among sites. Epiphytic algae showed less variation among sites than macrophytes and were depleted by 4–5 compared with macrophytes. Detrital material, organic matter in the sediments and plankton were significantly depleted in 13C relative to macrophytes and slightly depleted relative to epiphytic algae. Most macroinvertebrate taxa showed a similar pattern among sites to macrophytes and epiphytic algae. P. antipodarum and chironomids were slightly enriched compared with epiphytic algae. Ratios for the common bully (Gobiomorphus cotidianus) were generally consistent with a diet dominated by chironomids, while there was some evidence for terrestrial inputs for koaro (Galaxias brevipinnis) and juvenile brown trout. Epiphytic algae appear to underpin much of the production in the littoral zone of this oligotrophic lake, with trichopteran and chironomid larvae mediating carbon flows from algae to fish. Macrophytes do not make a major contribution directly to carbon flow to higher trophic levels even when decayed. The lack of a direct link between macrophytes and higher trophic levels is due to the faunal composition, including a lack of large herbivores.  相似文献   

2.
Seasonal variations of phyto-, bacterio- and colourless flagellate plankton were followed across a year in the large shallow Lake Balaton (Hungary). Yearly average chlorophyll-a concentration was 11 µg 1–1, while the corresponding values of bacterioplankton and heterotrophic nanoflagellate (HNF) plankton biomass (fresh weight) were 0.24 mg 1–1 and 0.35 mg 1–1, respectively. About half of planktonic primary production was channelled through bacterioplankton on the yearly basis. However, there was no significant correlation between phytoplankton biomass and bacterial abundance. Bacterial specific growth rates were in the range of 0.009 and 0.09 h–1, and ended to follow the seasonal changes in water temperature. In some periods of the year, predator-prey relationships between the HNF and bacterial abundance were obvious. The estimated HNF grazing on bacteria varied between 3% and 227% of the daily bacterial production. On an annual basis, 87% of bacterial cell production was grazed by HNF plankton.  相似文献   

3.
1. Benthic chironomid larvae and the amphipod Gammarus lacustris have been observed in the pelagic habitats of many mountain lakes. The main goal of this study was to determine if chironomid larvae and gammarids potentially affect predator–prey and nutrient dynamics in pelagic food webs of mountain lakes. 2. Eighty‐six mountain lakes were surveyed in Alberta and eastern British Columbia during the years 1965–1984, 1991–2004 and 2005–2007. Pelagic chironomid larvae were found in 86% of these lakes, and pelagic gammarids were found in 29% of lakes. Densities of pelagic chironomid larvae were 92% lower in lakes with pelagic gammarids and 76% lower in lakes with trout (P < 0.05). Intraguild predation of trout on gammarids appeared to reduce predation pressure on chironomid larvae. Gammarids consumed in vitro about 1 chironomid per gammarid per day or about 20% of their body mass in chironomid biomass per day. 3. Concentrations of total dissolved P and N, particulate C, and chlorophyll‐a increased with increasing densities of pelagic gammarids and chironomid larvae in situ (R2 = 0.14 ± 0.19 SD, P < 0.1) and in vitro (P < 0.001). 4. Our findings suggest that gammarids and chironomid larvae are linked as predators and prey in pelagic food webs, possibly stimulating phytoplankton abundance via nutrient release.  相似文献   

4.
Bacterial and phytoplankton cell number and productivity were measured in the mixolimnion and chemocline of saline meromictic Mahoney Lake during the spring (Apr.–May) and fall (Oct.) between 1982 and 1987. High levels of bacterial productivity (methyl 3H-thymidine incorporation), cell numbers, and heterotrophic assimilation of 14C-glucose and 14C-acetate in the mixolimnion shifted from near surface (1.5 m), at a secondary chemocline, to deeper water (4–7 m) as this zone of microstratification gradually weakened during a several year drying trend in the watershed. In the mixolimnion, bacterial carbon (13–261 µgC 1–1) was often similar to phytoplankton carbon (44–300 µgC 1–1) and represented between 14–57% of the total microbial (phytoplankton + bacteria) carbon depending on the depth interval. Phototrophic purple sulphur bacteria were stratified at the permanent primary chemocline (7.5–8.3 m) in a dense layer (POC 250 mg 1–1, bacteriochlorophyll a 1500–70001µ 1–1), where H2S changed from 0.1 to 2.5 mM over a 0.2 m depth interval. This phototrophic bacterial layer contributed between 17–66% of the total primary production (115–476 mgC m–2 d–1) in the vertical water column. Microorganisms in the phototrophic bacterial layer showed a higher uptake rate for acetate (0.5–3.7 µC 1–1 h–1) than for glucose (0.3–1.4 µgC 1–1 h–1) and this heterotrophic activity as well as bacterial productivity were 1 to 2 orders of magnitude higher in the dense plate than in the mixolimnetic waters above. Primary phytoplanktonic production in the mixolimnion was limited by phosphorus while light penetration appeared to regulate phototrophic productivity of the purple sulphur bacteria.  相似文献   

5.
Changes in both the environment and environmental research have led to the development of new protocols and approaches. These new approaches consider both the effects of changes in the global environment on living organisms (i.e. the responses of ecosystems to environmental processes) and the feedback responses of these organisms and ecosystems (i.e. the effects of living organisms on the environment). The present paper focuses on pelagic food webs in aquatic ecosystems. We examine three major effects of global environmental changes on aquatic organisms: (i) the release of pollutants and biological agents in lakes and nearshore marine waters; (ii) the loss of biodiversity and the collapse of commercially exploited resources that were heretofore renewable. We develop detailed examples of the effects of human activities on marine organisms (i.e. the effects of nutrient supply on the structure of pelagic food webs in marine systems. Finally, we examine (iii) the food-web-controlled exchanges of CO2 between the atmosphere and the ocean, as a feedback effect of pelagic ecosystems on the global environment with respect to the ongoing climate change.  相似文献   

6.
Pelagic early life phase of the bullhead in a freshwater lake   总被引:1,自引:0,他引:1  
In June and July 1998, in Hallstättersee, Austria, late larval/early juvenile bullhead Cottus gobio L. were found in littoral and pelagic habitats, the latter representing the first record of pelagic habitat use of this species during early life history.  相似文献   

7.
1. Both the pelagic and benthic net dissolved inorganic carbon (DIC) productions were measured in situ on four occasions from June to September 2004, in the unproductive Lake Diktar-Erik in subarctic Sweden. The stable isotopic signal ( δ 13C) of respired organic material was estimated from hypolimnion water data and data from a laboratory incubation using epilimnion water.
2. Both pelagic and benthic habitats were net heterotrophic during the study period, with a total net DIC production of 416 mg C m−2 day−1, of which the pelagic habitat contributed approximately 85%. The net DIC production decreased with depth both in the pelagic water and in the sediments, and most of the net DIC production occurred in the upper water column.
3. Temporal variations in both pelagic and benthic DIC production were small, although we observed a significant decrease in pelagic net DIC production after the autumn turnover. Water temperature was the single most important factor explaining temporal and vertical variations in pelagic DIC production. No single factor explained more than 10% of the benthic net DIC production, which probably was regulated by several interacting factors.
4. Pelagic DIC production, and thus most of the whole-lake net production of DIC, was mainly due to the respiration of allochthonous organic carbon. Stable isotope data inferred that nearly 100% of accumulated DIC in the hypolimnion water had an allochthonous carbon source. Similarly, in the laboratory incubation using epilimnion water, c. 85% of accumulated DIC was indicated to have an allochthonous organic carbon source.  相似文献   

8.
Water chemistry of Lake Kalgaard in 1976–77 was characterized by low concentrations of total-CO2 and inorganic nutrients. The ionic composition resembled that of precipitation (Na>Ca>Mg >K and Cl>SO4>HCO3). The seasonal pattern of total-CO2 and PO4 was regulated by internal processes and maximum concentrations as a result of decomposition processes occurred during summer stagnation. NO3 concentrations showed the opposite pattern and were relatively high from late autumn through spring and were extremely low during summer. Total-P and PO4 increased during summer due to release from the sediment. The phytoplankton biomass of surface water was low. The water chemistry suggested a shift from N-limitation of phytoplankton during summer to P-limitation at other seasons. Maximum algal concentrations occurred at 6 m during summer, probably due to a supply of nutrients (especially NH4) from deeper layers. Phytoplankton productivity was often bimodal, with an upper maximum at depths of 0 or 2 m and a second maximum at 6 m.  相似文献   

9.
Ultraviolet solar radiation (UVR) and atmospheric nutrient loads to pristine ecosystems are global climate change phenomena that simultaneously affect aquatic organisms in ways not easily predicted by single factor studies. Plankton in a high mountain lake was exposed in situ to increasing phosphorus (P) concentrations (mimicking atmospheric pulses) in absence or presence of UVR in order to identify their interactive effect on functional [primary production, organic carbon (C) release (EOC), and percentage of C released (%EOC)], growth rate, structural–physiological (algal biomass, sestonic C, P content, chlorophyll a (Chl a), and Chl a : C ratio, P cell quota, cell‐specific Chl a), and stoichiometric (autotroph C : P ratio) traits. The availability of P after the pulse determined the intensity of responses by primary producers to UVR stress. All structural–physiological and functional variables significantly increased by up to two orders of magnitude in response to P enrichment. UV radiation, over a long‐term scale, exerted significant deleterious effects on most structural–physiological variables when inorganic P was added at high levels (≥30 μg P L?1). The subsequent unexpected negative synergistic UVR × P effect on algal development did not support our initial hypothesis that P input might buffer the harmful UVR effect. UVR exerted a weak negative effect on primary production but strongly enhanced the absolute and percentage excretion of C (up to 60%), mechanism responsible of a significant reduction in autotroph C : P ratios. We propose that low sestonic C : P ratios are the outcome of an adaptive strategy of algae in environments with high UVR exposure and extreme nutrient limitation and have important implications for C flux through grazing vs. microbial food webs in oligotrophic systems.  相似文献   

10.
11.
12.
SUMMARY 1. Many Australian inland rivers are characterised by vast floodplains with a network of anastomosing channels that interconnect only during unpredictable flooding. For much of the time, however, rivers are reduced to a string of disconnected and highly turbid waterholes. Given these features, we predicted that aquatic primary production would be light-limited and the riverine food web would be dependent on terrestrial carbon from floodplain exchanges and direct riparian inputs.
2. To test these predictions, we measured rates of benthic primary production and respiration and sampled primary sources of organic carbon and consumers for stable isotope analysis in several river waterholes at four locations in the Cooper Creek system in central Australia.
3. A conspicuous band of filamentous algae was observed along the shallow littoral zone of the larger waterholes. Despite the high turbidity, benthic gross primary production in this narrow zone was very high (1.7–3.6 g C m−2 day−1); about two orders of magnitude greater than that measured in the main channel.
4. Stable carbon isotope analysis confirmed that the band of algae was the major source of energy for aquatic consumers, ultimately supporting large populations of crustaceans and fish. Variation in the stable carbon and nitrogen isotope signatures of consumers suggested that zooplankton was the other likely major source.
5. Existing ecosystem models of large rivers often emphasise the importance of longitudinal or lateral inputs of terrestrial organic matter as a source of organic carbon for aquatic consumers. Our data suggest that, despite the presence of large amounts of terrestrial carbon, there was no evidence of it being a significant contributor to the aquatic food web in this floodplain river system.  相似文献   

13.
The concept of limiting nutrients is a cornerstone of theories concerning the control of production, structure and dynamics of freshwater and marine plankton. The current dogma is that nitrogen is limiting in most marine environments while freshwater ecosystems are mostly phosphorus-limited, although evidence of phytoplankton limitation by either N or P has been found in both environments.However, the same considerations apply to the availability of phosphorus in freshwater as to nitrogen in oceans. In resource-limited environments the plankton dynamics depend mostly on the internal mechanisms which act to recycle the limiting nutrient many times over within the surface waters. As the overall productivity increases, this dependence on nutrient regeneration decreases.The relationship between the stock of limiting nutrient, rates of supply and plankton dynamics must therefore be seen in the light of the processes operating within the entire food chain over quite different time scales. There is strong evidence that process-rates are mostly size-dependent and that food web interactions at the microbial level (picophytoplankton, bacteria, microheterotrophs) strongly effect the production of carbon and the regeneration of nutrients in the pelagic zone.  相似文献   

14.
The importance of airborne plant litterfall as a source of organic material was evaluated for a small oligotrophic lake. The airborne plant litter input was estimated to be 100 kg yr–1 (45 kg C. yr–1), which represents approximately 5% of the phytoplankton productivity. The quantity of plant litter entering the lake followed an exponential decline with distance from the shore.  相似文献   

15.
Macrozoobenthos in Thingvallavatn is dominated by 42 taxa. The vertical distribution delimits 5 communities: (1) the surf zone community from 0–2 m, (2) the upper stony littoral community from 2–6 m, (3) the lower stony littoral community from 6–10 m, (4) the Nitella zone community from 10–20 m, and (5) the profundal zone community from 20–114 m. Total mean lakewide production was 78 kJ m–2 yr–1. Herbivores, detritivores, and carnivores contributed 59%, 38% and 3%, respectively. Respiration and ingestion were estimated according to the literature. Net production efficiency averaged 0.50. Ingestion was dominated by herbivores in the littoral zones (46–81%), while detritivores made up 93% in the profundal zone. Total zoobenthic production averaged 6% of estimated available food with a range from 10–11% in the three upper littoral zones to only 2% in the Nitella zone. The profundal fauna converted 6% of the estimated sedimentation of organic matter to secondary production. On a lakewide basis the zoobenthis utilized one third of the estimated potential food resources. Zoobenthic production made up 32% of total secondary production.  相似文献   

16.
1. Temperature and many other physical and chemical factors affecting CO2 production in lake sediments vary significantly both seasonally and spatially. The effects of temperature and sediment properties on benthic CO2 production were studied in in situ and in vitro experiments in the boreal oligotrophic Lake Pääjärvi, southern Finland. 2. In in situ experiments, temperature of the water overlying the shallow littoral sediment varied seasonally between 0.5 and 15.7 °C, but in deep water (≥20 m) the range was only 1.1–6.6 °C. The same exponential model (r2 = 0.70) described the temperature dependence at 1.2, 10 and 20 m depths. At 2.5 and 5 m depths, however, the slopes of the two regression models (r2 = 0.94) were identical but the intercept values were different. Sediment properties (wet, dry, mineral and organic mass) varied seasonally and with depth, but they did not explain a significantly larger proportion of variation in the CO2 output rate than temperature. 3. In in vitro experiments, there was a clear and uniform exponential dependence of CO2 production on temperature, with a 2.7‐fold increase per 10 °C temperature rise. The temperature response (slope of regression) was always the same, but the basic value of CO2 production (intercept) varied, indicating that other factors also contributed to the benthic CO2 output rate. 4. The annual CO2 production of the sediment in Lake Pääjärvi averaged 62 g CO2 m?2, the shallow littoral at 0–3 m depth releasing 114 g CO2 m?2 and deep profundal (>15 m) 30 g CO2 m?2. On the whole lake basis, the shallow littoral at 0–3 m depth accounted for 53% and the sediment area in contact with the summer epilimnion (down to a depth c. 10 m) 75% of the estimated total annual CO2 output of the lake sediment, respectively. Of the annual production, 83% was released during the spring and summer. 5. Using the temperature‐CO2 production equations and climate change scenarios we estimated that climatic warming might increase littoral benthic CO2 production in summer by nearly 30% from the period 1961–90 to the period 2071–2100.  相似文献   

17.
The introduction of Eurasian watermilfoil (Myriophyllum spicatum) into oligotrophic waters of high water clarity in temperate zones of North America has produced growth in excess of 6 m depth and yearly biomass approaching 1000 g m–2 dry weight. From its initial observation in Lake George, New York, USA in 1985, by 1993 milfoil had spread to 106 discrete locations within the lake. A 7-year study of one site having no management showed milfoil to grow expansively, suppressing native plant species from 20 in 1987 to 6 in 1993 with the average number of species m–2 quadrat declining from 5.5 in 1987 to less than 2 in 1993. Management of milfoil by means of hand harvesting, suction harvesting and benthic barrier has reduced the number of unmanaged sites from 106 in 1993 to 11. One year post-treatment at sites utilizing suction harvesting, showed a greater number of native species at all sites than pretreatment with a substantial reduction in milfoil biomass. At sites where benthic barrier was removed 1–2 years after installation, milfoil had recolonized 44% of grid squares within 30 days. Ninety days after barrier removal 74% of grid squares contained milfoil and one year later 71% of the grids supported milfoil. During the first year following mat removal, the average number of species m–2 peaked at 4.7 and stabilized at 4.5 during the second year. Hand harvesting by SCUBA in areas of limited milfoil growth (new sites of infestation and sites of former treatment) was found to reduce the number of milfoil plants present in subsequent years. Hand harvesting did not eliminate milfoil at any of the sites and regrowth/colonization necessitated reharvesting every 3 or more years. Results of evaluations of physical plant management techniques indicate that (1) an integrated program utilizing different techniques based on plant density reduced the growth of milfoil and (2) long term commitment to aquatic plant management is necessary since none of the techniques employed singly were found to eliminate milfoil.  相似文献   

18.
Temporal plankton dynamics in an oligotrophic maritime Antarctic lake   总被引:3,自引:0,他引:3  
  • 1 The population density, diversity and productivity of the microbial plankton in an oligotrophic maritime Antarctic lake were studied for a 15‐month period between December 1994 and February 1996.
  • 2 In the lake, concentrations of nutrients and dissolved organic carbon were uniformly low, temperature varied over a small annual range of 0.1–3 °C, and the surface was ice‐covered except during a period of approximately 6 weeks in summer.
  • 3 The total of 57 morphotypes of protozoa observed during the study is a higher taxonomic diversity than previously reported from continental Antarctic lakes, but lower than that found in more eutrophic maritime Antarctic lakes. Likewise, planktonic abundance and productivity were lower than has been reported in other lakes on Signy Island, but generally higher than those of lakes on the Antarctic continent.
  • 4 There were marked seasonal and interannual variations in planktonic population density.
  • 5 Chlorophyll a concentrations ranged from undetectable to 4.2 µg L‐1 and the greatest rate of primary productivity measured was 4.5 mg C m‐3 h‐1. The phytoplankton was dominated by small chlorophytes and chrysophytes, with phototrophic nanoflagellate abundance ranging from 1.1 × 103 to 1.2 × 107 L‐1.
  • 6 Bacterial densities of 3.6 × 108 to 1.9 × 1010 L‐1 were recorded and bacterial productivity reached a peak of 0.36 µg C L‐1 h‐1. Numbers of heterotrophic nanoflagellates between 5.0 × 104 and 1.8 × 107 L‐1, and of ciliates from undetectable to 1.1 × 104 L‐1 were observed. Naked amoebae were usually rare, but occasionally reached peaks of up to 1.5 × 103 L‐1.
  相似文献   

19.
Nitrogen-fixation in the littoral benthos of an oligotrophic lake   总被引:1,自引:0,他引:1  
Blue-green algae are common in the benthos of Mirror Lake, New Hampshire (U. S. A.) — on macrophytes and on the lake bottom-and are probably responsible for the variable, sometimes high rates of N-fixation that detected by a series of acetylene-reduction assays during September and October.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号