首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vascularization of the brain and the pituitary region of the Australian lungfish, Neoceratodus forsteri is described from serial section reconstruction. The distal lobe has no direct arterial blood supply and receives blood solely from a pituitary portal system basically similar to that of other sarcopterygians. The primary capillary plexus of the median eminence receives its arterial blood from the infundibular arteries, which on their way distribute some small branches to the prechiasmatic region. The primary plexus also receives capillaries from the adjacent pial hypothalamic plexus. The primary capillary plexus of the median eminence comprises a rostral 'uncovered' and caudal 'covered' part which are not sharply delineated. Distinct portal vessels connect the 'uncovered' rostral part of the primary plexus with the secondary capillary plexus supplying the rostral subdivision of the pars distalis. The 'covered' caudal part of the primary plexus merges into the proximal subdivision of the pars distalis, apparently without formation of distinct portal vessels. The primary plexus has some connections with the plexus intermedius via a hypophysial stem capillary plexus. The plexus intermedius has a substantial arterial supply and gives off capillaries to the parenchyma of the pars intermedia. The adenohypophysis is drained into an unpaired hypophysial vein. The significance of the vascular pathways is discussed from comparative, functional, and evolutionary viewpoints.  相似文献   

2.
The pars distalis of the avian adenohypophysis consists of well-defined cephalic and caudal lobes which are distinct in their cellular constituents. Immunocytochemical investigations on the pituitary hormones of the pars distalis of the Japanese quail reveal five types of secretory cells, adenocorticotropin (ACTH) cells, prolactin (PRL) cells, thyroid-stimulating hormone (TSH) cells, growth hormone GH (STH) cells, and FSH/LH (gonadotropic) cells. The ACTH cells, TSH cells, and PRL cells are restricted to the cephalic lobe, and GH (STH) cells are confined to the caudal lobe, while FSH/LH cells are distributed throughout the cephalic and caudal lobes. The median eminence of birds has distinct anterior and posterior divisions, each with different neuronal components. The avian hypophysial portal vessels also consists of two groups, anterior and posterior. The peculiar arrangement and distribution of the avian hypophysial portal vessels are possibly related to the distribution of neuropeptides in the two divisions of the median eminence and to the cytological and functional differentiation of two lobes of the pars distalis. The localization of perikarya and fibers containing luteinizing hormone releasing hormone (LHRH), somatostatin, vasotocin, mesotocin, corticotropin-releasing factor (CRF), vasoactive intestinal polypeptide (VIP), glucagon, metenkephalin, and substance P in the hypothalamus and median eminence of the Japanese quail has been investigated by means of immunohistochemistry using antisera against the respective neuropeptides. LHRH-, somatostatin-, VIP-, met-enkephalin-, and substance P-immunoreactive fibers are localized in the external layer of the anterior and posterior divisions of the median eminence, while CRF- and vasotocin-reactive fibers are demonstrated only in the external layer of the anterior division of the median eminence. The metenkephalin fibers are thicker in the anterior median eminence but the substance P fibers are more abundant in the posterior division. Mesotocin fibers occur only in the internal layer of the median eminence and neural lobe.  相似文献   

3.
In C. punctatus the median eminence includes the subterminal region of the hypothalamus and the anterior neurohypophysis. It is formed of ependymal, fibrous and reticular layers as in the tetrapods. Primary capillary plexus extends from the subterminal region to the extremity of the anterior neurohypophysis. Only few portal vessels from the hypothalamus enter in the pars distalis. All the components of pituitary including the pars intermedia are irrigated by the secondary plexus formed from the portal vessels emerging out of the anterior neurohypophysis. The neurosecretory axons and the ependymal cells are in close morphological contact with the primary plexus. Several axons have perivascular endings at the median eminence. Some axons were found to be only silver or aldehyde fuchsin positive whereas some others take up both. The silver positive axons were abundant in the pars distalis and the AF positive ones were more concentrated in the pars intermedia with greater accumulation of neurosecretory material.  相似文献   

4.
The vascularization of the pituitary region in Acipenser ruthenus L. (Chondrostei) is described. The adenohypophysis has no direct arterial supply but is fed exclusively by a pituitary portal system supplied through a pair of infundibular arteries. Distinct portal vessels connect the lateral part of the primary plexus of the neurohaemal area (the median eminence) with the secondary plexus of the pituitary gland. The primary plexus enters the pars distalis paramedially, apparently without the formation of distinct portal vessels. The neuro-intermediate lobe receives its blood supply exclusively from the primary plexus. The plexus intermedius gives off capillaries to the parenchyma of the intermediate lobe (an intermediate lobe sinus system). The saccus vasculosus receives (1) a “direct” supply, i.e. branches originating directly from the cerebral arteries and (2) an “indirect” supply, i.e. capillaries from the primary plexus. The pars distalis is drained into an unpaired ventral hypophysial vein, while a dorsal hypophysial vein, also unpaired, drains the plexus intermedius. These two veins join to form the unpaired hypophysial vein. The findings are discussed from comparative and functional viewpoints.  相似文献   

5.
The pituitary vascular system of Anolis carolinensis is similar to that of other lizards. Distinct portal vessels connect the primary plexus of the median eminence with the secondary plexus of the pars distalis. The primary plexus has some connections with the neural lobe. The neural lobe plexus is fed by separate arteries, and drains into the pars intermedia. The latter lobe receives its blood supply by this route. The pituitary is drained into the vena retrohypophysea. The findings are discussed in relation to existing theories regarding the neurovascular control of the pars intermedia.  相似文献   

6.
Summary The development of the hypophysial portal system has been studied in 35 embryos and 45 nestlings of the White-crowned Sparrow. The primordium of the hypophysis is vascularized by the infundibular (primary) capillary plexus, supplied by the right and left infundibular arteries, which, in the embryo, are constant branches of the right and left internal carotid arteries.The cellular proliferation and differentiation of the pars distalis into rostral and caudal lobes is accompanied by a penetration of portal vessels from the infundibular (primary) capillary plexus into these lobes beginning on the fifth day of incubation. The cellular proliferation of the rostral lobe of the pars distalis and development of the rostral group of the portal vessels precedes that of the caudal lobe of the pars distalis and the development of the caudal group of the portal vessels.The periglandular vessels, which originate in younger embryos from the infundibular (primary) capillary plexus, apparently become a part of the portal vessels.The portal vessels are the sole blood supply to the developing pars distalis of the White-crowned Sparrow; there is no evidence of a direct arterial supply at anytime during embryonic development. The neural-lobe artery appears at the end of incubation as a secondary branch of the right and left infundibular arteries. The rostral and caudal groups of the portal vessels are well-developed at the end of incubation (17–29 mm CRL) when aldehyde-fuchsin positive neurosecretory material first appears in the supraoptic and paraventricular nuclei, in the median eminence and in the neural lobe.The differentiation of the median eminence into rostral and caudal divisions begins at the end of the nestling period although its adult form is not achieved until later. The formation of the portal zone begins at the end of incubation (17–29 mm CRL) and is completed by the time of fledging.Dedicated to Professor Dr. W. Bargmann in honor of his 60th birthday.The investigations reported herein were supported by a research grant (HE 07240 NEUA) from the National Institutes of Health to Professor Vitums, by funds for biological and medical research made available by State of Washington Initiative Measure No 171 to Professor Vitums, by a research grant from the Deutsche Forschungsgemeinschaft to Professor Oksche, by aresearch grant (NB 01353) from the National Institutes of Health to Professor Farner, and by a Research Career Development Award from the National Institute of Arthritis and Metabolic Diseases (5 K 3 AM-18,370) to Professor King. We are grateful to Professor Bargmann for his generosity in making available the facilities of the Anatomisches Institut Kiel for this investigation. We wish to thank Frau Karin Graap and Mrs. Dianne Reno for technical assistance and Miss Janice Austin for the preparation of the drawings.  相似文献   

7.
8.
Summary The study of standarized sections of the hypophysial regions, and in vivo observations showed the presence of communicating vessels between the capillary network of the median eminence and the large capillaries of the neurointermediate junction. Moreover, direct branches from the hypophysial artery are described which give off branches, at the level of the neural stalk, to the median eminence and to the large capillaries of the neurointermediate junction.A second portal system similar to the one described by Cruz has been observed. Its primary plexus originates in several encephalic regions, and its secondary plexus is distributed through the neural lobe and thence to the pars intermedia. The course of flow in this system is a descending one. The arterial contribution to this system appears to arise from branches from the basilar and retroinfundibular arteries. — There are small venous-type vessels between the large capillaries of the neurointermediate junction and the posterodorsal region of the pars distalis. — After adenohypophysectomy, the blood which normally goes towards the pars distalis, flows towards the pars intermedia, following the path of the communicating vessels between the median eminence and the pars intermedia.This paper was presented at the VII Reunion de la Asociación Latinoamericana de Ciencias Fisiológicas (A.L.A.C.F.), Mar del Plata, Argentina, 1966. It was carried out under the auspices of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the Rockefeller Foundation (School grant RF-58028).Fellows of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. — The authors wish to thank Prof. B. A. Houssay and Drs. J. H. Tramezzani and J. la Pointe for their criticism, to Prof. M. H. Burgos and Dr. F. Sacerdote for their help.  相似文献   

9.
The hypothalamo-hypophysial vascular relationship and intra-hypophysial vasculatisation have been described in order to understand the regulatory mechanism of hypothalamic control over the functions of the pituitary gland. In Glossogobius giuris, the disposition of the blood vessels in the head region is on typical teleostean pattern with certain modifications. The nucleus preopticus is supplied through the nucleus preopticus artery, a small blood vessel arising from the anterior branch of the posterior cerebral artery, whereas the pituitary gland receives blood through a pair of hypophysial arteries. The blood from the pituitary is drained off by the pituitary veins whch pour their blood into the supra-orbital sinus. The anterior cerebral vein after taking the blood from anterior part of the brain including the hypothalamus and the nucleus preopticus joins with the supra-orbital sinus. The hypothalamo-hypophysial portal system is absent in this fish. The saccus vasculosus receives blood from the posterior cerebral artery through a small blood vessel and is collected by a prominent saccus vasculosus vein which pours blood into the supra-orbital sinus before it joins the infra-orbital sinus to form the heat vein. There seems to be no physological connection between the saccus vasculosus and pituitary gland. The highly vascularised neurohypophysis interdigitate with the pars intermedia and extends upto the proximal pars distalis. The blood vessels are restricted to the neurohypophysial extensions only. However, in the rostral pars distalis the blood vessels are present but the neurohypophysis does not extend to this part. The blood capillaries enter the rostral pars distalis from the capillary network on the surface of pituitary gland along with the connected tissue covering of the pituitary. The neurohypophysis shows a greater vascularisation in comparison to that of the other glandular part of the pituitary gland. In the present study of Glossogobius giuris, though an extensive ramification of neurohypophysis occurs with the pars intermedia and the proximal pars distalis, the neurosecretory axons do not innervate the endocrine cells of the pituitary gland and the blood vessels are found restricted to the neurohypophysial extensions except that of the rostral pars distalis. The neuro-vascular way of hypothalamic control over the functions of the pituitary gland seems to be justified as the neurosecretory fibres have been found associated with the blood vessels.  相似文献   

10.
Summary The GABAergic innervation of the mouse pituitary, including the median eminence, was studied at light microscopic and ultrastructural levels by use of a pre-embedding immunocytochemical technique with antibodies directed against GABA. In the median eminence, a high density of GABA-immunoreactive fibers was found in the external layer where the GABAergic varicosities were frequently observed surrounding the blood vessels of the primary capillary plexus. In the internal and subependymal layers, only few fibers were immunoreactive. The intense labeling of the external layer was observed in the entire rostro-caudal extent of the median eminence. In the pituitary proper, a dense network of GABA-immunoreactive fibers was revealed throughout the neural and intermediate lobes, entering via the hypophyseal stalk. The anterior and tuberal lobes were devoid of any immunoreactivity. The GABA-immunoreactive terminals were characterized in the median eminence, and in the intermediate and posterior lobes at the electron-microscopic level. They contained small clear vesicles, occasionally associated with dense-core vesicles or neurosecretory granules. In the intermediate lobe they were seen to be in contact with the glandular cells. In the posterior lobe and in the median eminence, GABA-immunoreactive terminals were frequently located in the vicinity of blood vessels. These results further support the concept of a role of GABA in the regulation of hypophyseal functions, via the portal blood for the anterior lobe, directly on the cells in the intermediate lobe, and via axo-axonic mechanisms in the median eminence and posterior lobe.  相似文献   

11.
The expression of a common alpha-subunit mRNA of glycoprotein hormones was examined in the pituitary of chick embryos at various stages of development by in situ hybridization with a digoxigenin-labeled quail alpha-subunit cRNA probe. As a comparison with the expression of alpha-subunit mRNA, the onset of luteinizing hormone (LH) immunoreactivity was examined by immunohistochemical staining with a chicken LH antiserum. Both alpha-subunit mRNA and LH immunoreactivity began to appear in the basal-posterior region of the Rathke's pouch at embryonic day (E) 3.5. At E4.5 when the cephalic and caudal lobes of the pars distalis could be distinguished in the Rathke's pouch, intense signal for alpha-subunit mRNA was restricted to the cephalic lobe, consisting of a high columnar epithelium. At E6, gonadotrophs that were ovoid in shape, expressed intense signal for alpha-subunit mRNA, and revealed intense immunoreactivity for LH, were first detected in the cephalic lobe. At this stage, alpha-subunit mRNA expression became weak in the undifferentiated columnar cells of the cephalic lobe. At E8, the pars tuberalis primordium located close to the median eminence was formed at the lateral-apical end of the cephalic lobe. The primordium expressed intense signal for alpha-subunit mRNA. Gonadotrophs showing immunoreactivity for LH were densely distributed throughout the cephalic and caudal lobes in 8-day-old embryos. The pars tuberalis primordium expressing alpha-subunit mRNA progressively extended along the median eminence with embryonal age and reached the rostoral end by E14. Thus, both primordia of the pars distalis and pars tuberalis expressed intense signal for the common alpha-subunit mRNA. This subunit may play a role in the cytodifferentiation of the adenohypophysis.  相似文献   

12.
Summary The vascularization of the pars distalis of the hypophysis of the toad, Bufo bufo (L.), was studied by the traditional method of injecting a mixture of India-ink and gelatine into the circulatory system of the head via the arteria carotis communis. Further, methyl-methacrylate corrosion casts of the brains were made; the hypothalamo-adenohypophysial region of these corrosion casts was studied with the scanning electron microscope. The results showed that the portal vessels which arise from the median eminence do not supply distinct areas in the pars distalis as is supposed by the point-to-point-hypothesis. The portal vessels enter the ventro-median region of the pars distalis and branch off into a three-dimensional network of the secondary capillary plexus of the pars distalis. The plexus is made up mostly by four- to six-sided meshes. This angioarchitecture guarantees an optimal supply of the glandular cells of the pars distalis with nutritional factors and releasing hormones, on the one hand, and facilitates the removal of the hormones which are released by these cells, on the other hand. The venous drainage of the pars distalis is exerted mainly by two large veins, which bilaterally leave the dorso-lateral region (venous pole) of the pars distalis and by a few small veins, which drain into the wide, sinus-like vessel, which curves around the dorso-caudal region of the pars distalis and joins bilaterally the vena hypophysea transversa.This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 2183/N 39) and by the Stiftungs- und Förderungsgesellschaft der Paris-Lodron-Universität SalzburgThe authors wish to thank Mag. Ursula Albrecht for excellent technical assistance and Mr. Gerhard Sulzer for photographic work  相似文献   

13.
Summary The pars tuberalis of the hypophysis of Rana temporaria presents the general structural and the cytological characteristics of an endocrine gland. It is composed of elongated cells with long, branching processes ending on the external basement membrane of the pericapillary space. The pars tuberalis cells produce secretory granules which are accumulated in the pericapillary endings of the processes.Corresponding to its separate localization, the pars tuberalis of Rana temporaria has a separate vascularization of which the efferent capillaries anastomose with the capillary plexus of the median eminence. The general direction of the blood flow of the pars tuberalis is towards the capillaries of the median eminence. Also, the secretory products of the pars tuberalis pass into the blood stream of the hypophysial portal system.Several characteristics of the pars tuberalis show that its function must be different from that of the pars distalis of the hypophysis. Moreover, in contrast with the pars distalis, the activity of the pars tuberalis is not regulated by neurohumoral factors.The results show that a role of the pars tuberalis in the regulation of the activity of the pars distalis of the hypophysis is not excluded.  相似文献   

14.
This study describes the hypophyseal angioarchitecture found in 79 adult New Zealand white rabbits. The pituitary glands and attached hypothalami were removed and carefully processed following routine histological methods, and the vascular organization was studied by light microscopy. Whole mounts of the pituitary median eminence complex were prepared and studied with a binocular dissecting microscope employing transmitted and epi-illumination. Arterial blood was found to be directed primarily to the neurohypophysis by the superior hypophyseal artery (SHA) and the inferior hypophyseal artery (IHA). A direct arterial blood supply was found to the adenohypophysis, but was limited solely to the pars intermedia by branches of the anterior hypophyseal artery (AHA) and the IHA. Capillaries of the pars intermedia were subdivided into an intermediate and a superficial plexus. The superficial plexus was situated between the intermediate plexus and the capillaries of the infundibular process. Capillaries of the superficial plexus did not form anastomoses between themselves, but ramified into the intermediate plexus to form a dense network of anastomosing capillaries that were continuous with capillaries of the pars distalis. A direct arterial blood supply was found only to the superficial plexus.  相似文献   

15.
The vascular corrosion cast technique in conjunction with scanning electron microscopy (SEM) was used for the study of pituitary microvascularization in the common tree shrew (Tupaia glis). The pituitary vascular casts were obtained by infusion of low viscosity methyl methacrylate plastic (Batson's no.17) mixture. It was found that the blood supplies to the pituitary complex were from branches of the circle of Willis and could be divided into two groups. The first group consisted of two to four superior hypophyseal arteries (SHAs) branching off from the internal carotid artery supplying each half of the median eminence (ME), infundibular stalk (IS), and pars distalis (PD). The SHAs supplying the ME branched into internal and external capillary plexi. The internal plexus had a larger capillary size (approximately 15 microns in diameter), was deeper in position, and had denser and more complex capillary loops than those in the external plexus. The capillaries of the external plexus were approximately 10 microns in diameter. The two plexi drained into 15-20 hypophyseal portal veins (HPVs) which were located mainly along the ventral and ventrolateral surfaces of the IS before breaking up into large capillaries (approximately 18 microns in diameter) with an anteroposterior arrangement within the PD. The second group consisted of one inferior hypophyseal artery (IHA) on each side branching off from the internal carotid artery. These arteries gave off branches to pierce the dorsolateral and ventrolateral aspects of infundibular process (IP) before branching off to form a capillary network. They also gave rise to radiating capillaries to supply the pars intermedia (PI) surrounding the cortical area of the IP. The hypophyseal cleft separating the PI from the PD was clearly seen with very few blood vessels. The capillaries in both PD and IP joined to form confluent hypophyseal veins draining the blood into the cavernous sinus.  相似文献   

16.
An active role of the ependymal cells (tanycytes) of the median eminence in the transport of hypothalamic hormones has been recently suggested. In order to investigate the fate of material present in the cerebrospinal fluid, a protein tracer, horse-radish peroxidase (HRP) was injected into the left lateral ventricle of rats. Two minutes after the injection, HRP had largely diffused between tanycytes and hypendymal cells. As soon as 5 min after the injection, HRP had completely penetrated all the layers of the median eminence. A few labelled vesicles and lysosomes were occasionally seen in ependymal and glial cells. At longer time intervals (20 min, 1 and 4 hrs), a reaction was observed in the lumen of fenestrated capillaries of the pituitary portal plexus. In many nerve endings of the external zone, vesicles and lysosomes were seen to contain HRP. An interesting observation was the localization of HRP between nerve endings and cells in both the pars nervosa and the pars intermedia of the pituitary gland. No reaction was recorded in the anterior pituitary and the kidney. Seventeen hours after the injection, the extracellular space was free of reaction but a few positive intracellular structure were still found. These results clearly indicate that some material from the third ventricle can rapidly diffuse between cells and axons of the median eminence to reach the fenestrated capillaries of the pituitary portal plexus and the posterior pituitary without involving an active transport by tanycytes.  相似文献   

17.
Summary Nerve fibres containing granular vesicles first appear in the median eminence of the rat on the 16th foetal day while secretory granules in the cells of the adenohypophysis are not present till the 17th foetal day. These observations suggest that the differentiation and early activity of pars distalis cells may depend on substances elaborated at nerve terminals in the median eminence. Although the loops of the primary plexus of portal vessels do not develop until the 4th postnatal day, substances released by nerve fibres in the neurohypophysis could reach the pars distalis through vessels already present at the 15th foetal day in the mesenchyme between the diencephalon and the adenohypophysis. This view is supported by the fact that the earliest cells to exhibit ultrastructural evidence of secretory activity are in the rostral pole of the pars distalis, the first region of the gland to become vascularized. The earliest granules to appear in the cells of the pars distalis correspond to those which are considered to contain mucoprotein hormones; somatotrophin type granules were seen only in postnatal tissues.The finding that, in the median eminence, the development of granular vesicles precedes that of agranular vesicles is discussed with reference to the times at which neurosecretory materials and monoamines become detectable in the region.We should like to thank Miss Ann Pearson, Mr. D. Burns, and Mr. J. Nailon for their technical assistance, and Mr. J. Simmons, F.R.P.S., for his help in the preparation of illustrations. This work was supported by grants from the National Health and Medical Research Council of Australia.  相似文献   

18.
Summary The development of the pars tuberalis was studied in the rat fetus from 13 days of gestation to 6 weeks after birth. After the closure of Rathke's pouch, the pars tuberalis anlage is clearly distinguishable from the anlagen of the partes intermedia and distalis. It comprises the entire basal portion of the adenohypophysial anlage; the limit between the anlagen of the pars tuberalis and the pars distalis is defined by Atwell's recess, i.e. the pathway taken by the hypophysial vessels coming from the vascular plexus of the median eminence.At 14 days the pars tuberalis cells are characterized by the presence of glycogen which persists in the adult. Their secretory differentiation (elaboration of granules with a diameter of 100–120 nm) is obvious at 15 days of gestation. It therefore, clearly precedes that of the other hypophysial cell types. Its functional differentiation takes place well before its adhesion to the primary vascular plexus of the portal system. Cystic formations appear just before birth in the pars tuberalis, much later than those of the pars distalis.These observations on the development of the pars tuberalis, together with previous observations on the adult PT in various species, showing that the specific glandular cells of the pars tuberalis are cytologically different from all known adenohypophysial cell types, seem to indicate a specific endocrine function of this lobe.  相似文献   

19.
The three-dimensional gross morphology of the pituitary gland of the garter snake (Thamnophis sirtalis) is presented. Hormone-producing cells of the pars distalis were localized immunocytochemically. Corticotropes and lactotropes occur in the anterior two-thirds of the gland; corticotropes are especially numerous in the area of the pars distalis nearest the median eminence, and lactotropes are most abundant medially. Somatotropes are restricted to the posterior one-third of the pars distalis. Gonadotropes and thyrotropes are scattered throughout the pars distalis and in favorable sections form a network of cells enclosing clusters of peptide-secreting cells.  相似文献   

20.
Summary The development of the pituitary gland and its blood vessels is described in rat embryos (gestational day 12 through day 21) injected with India-ink via the umbilical vessels. The vascularization of all components of the pituitary gland develops from the surface network covering the prosencephalic vesicle. However, vascular connections exist between the prospective median eminence and the anterior pituitary gland in the earliest stages examined (day 12) but are not augmented by vessels from the stomatodeal roof until day 13. Primary portal veins appear initially on day 13, the vascularization of the pars distalis is visible on day 15. The Mantelplexus covering the floor of the diencephalon is discernible on day 16. Large-caliber portal veins appear immediately before birth, but otherwise there is no significant change in the vascular pattern during the last five days of gestation. The pars intermedia and the median eminence-pituitary stalk region remain avascular throughout embryonic life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号