首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
1. Evidence is presented which indicates that inactivation of the mitochondrial ATPase from bovine heart by the reagent 4-chloro-7-nitrobenzofurazan results from modification of one tyrosine residue per enzyme molecule. Activity can be restored by a variety of sulphydryl reagents. 2. In sodium dodecyl sulphate, the nitrogenzofurazan group on tyrosine is transfered to newly exposed sulphydryl groups on the enzyme. 3. The rate of transfer of the nitrobenzofurazan moiety from theenzyme to sulphydryl compounds is compared with that for transfer from the model compound N-acetyl-tyrosine-0(7-nitrobenzo-furazan) ethyl ester, the synthesis and properties of which are also described. 4. The ligands ATP and ADP exert a protective effect on the rate of reaction between the mitochondrial ATPase and 4-chloro-7-nitrobenzofurazan. The variation in rate of this reaction with change in pH has also been examined and a pKa of 9.5 estimated for the tyrosine residue. 5. The modification does not prevent substrate binding as judged by changes in the fluorescence of aurovertin, an antibiotic with specific affinity for mitochondiral ATPases. 6. When the ATPase activity of submitochondrial particles is inhibited by 4-chloro-7-nitrobenzo-furazan, there is a parallel decrease in the extent of the energy-linked fluorescence enhancement of 1-anilino-naphthalene-8-sulphonate induced by ATP hydrolysis. Both ATPase activity and the fluorescence enhancement are restored by sluphydryl reagents.  相似文献   

2.
C Roustan  A Fattoum  L A Pradel 《Biochimie》1979,61(5-6):663-669
The effect of 7-chloro-4-nitrobenzofurazan on yeast 3-phosphoglycerate kinase causes a modification of one tyrosyl residue concomitantly with a total loss of activity of the enzyme. The modification is not accompanied by any significant conformational change. A total protection against inactivation is observed with the substrates : furthermore, AMP, tripolyphosphate and pyrophosphate afford an effective protection. At pH 9, a shift in the absorbance spectrum of the tyrosine O-nitrobenzofurazan derivative of 3-phosphoglycerate kinase is observed. It can be related to the transfer of the reagent from tyrosine to lysine. The N-nitrobenzofurazan derivative is also completely inactive. It is concluded that a lysine residue is located close to the essential tyrosyl residue.  相似文献   

3.
1. Modification of a single amino acid residue by introduction of the nitrobenzofurazan group inactivates mitochondrial ATPase (adenosine triphosphatase) when membrane-bound in submitochondrial particles. The similarity between the reactions of both membrane-bound and isolated ATPase with 4-chloro-7-nitrobenzofurazan indicates that the single essential tryosine residue identified in the isolated enzyme [Ferguson, Loyd, Lyons & Radda (1975) Eur. J. Biochem. 54, 117-126] Is also a feature of the membrane-bound ATPase. 2. A procedure is presented for estimating the ATPase content of the inner mitochondrial membrane. It is based on the specificity of the incorporation of the nitrobenzofurazan group, and the ready removal of this group by compounds that contain a thiol group. This method indicates that 8.5% of the membrane protein is ATPase. The procedure should be applicable to the titration of the energy-transducing ATPases of bacterial plasma membranes and of the thylakoid membranes of chloroplasts. 3. Combination of the data obtained on the ATPase content of the bovine heart inner mitochondrial membrane with a titration of the cytochrome bc1 complex with antimycin indicates that these two components of the membrane are present in approximately equal amounts.  相似文献   

4.
1. The cell-membrane ATP phosphohydrolase of vegetatively grown Clostridium pasteurianum was specifically Mg2+-dependent, but demonstrated significant activity with GTP, CTP and UTP. It displayed approximate Michaelis-Menten kinetics only in the presence of certain effectors (e.g. phosphoenolpyruvate, fructose 1,6-bis-phosphate) which decreased the Km for ATP (to below 2 mM) but also V, whilst extending to pH 5.8 the effective pH range of activity of the enzyme. 2. ATP phosphohydrolase activity of the membrane ATPase (BF0F1) was inhibited by N,N'-dicyclohexylcarbodiimide, butyricin 7423, Dio-9, 4-chloro-7-nitrobenzofurazan, efrapeptin, leucinostatin and quercetin, and to a lesser degree by aurovertin and citreoviridin. The enzyme was not inhibited by oligomycin, spegazzinine, tributyl tin, triethyl tin or venturicidin. The soluble ATPase (BF1) component differed in not being inhibited by N,N'-dicyclohexylcarbodiimide, butyricin 7423 or leucinostatin. 3. The ATPase (BF0F1) complex and its soluble (BF1) component were separately purified. 4. Dodecylsulphate/polyacrylamide gel electrophoresis separated only four polypeptide components in the purified ATPase (BF0F1), with approximate molecular weights (+/- 10%) as follows: subunit a, 65 500; subunit c, 57 500; subunit da, 43 000; subunit fa, 15 000. The soluble (BF1 component contained only the three polypeptide subunits a, c and da. These were present in the BF0F1 preparation in the ratio 2 : 1 : 2; the contribution of subunit fa could not satisfactorily be quantified. 5. Subunit a was identified as the component binding 4-chloro-7-nitrobenzofurazan and subunit fa as the component binding N,N'-dicyclohexylcarbodiimide. The ATP phosphohydrolase activity of the membrane ATPase was not activated by trypsin treatment and the ATPase (BF0F1) contained no trypsin-sensitive inhibitor protein subunit. 6. Purified ATPase (BF0F1) was incorporated into artificial proteoliposomes which demonstrated ATP-dependent enhancement of 8-anilinonaphthalene-1-sulphonate fluorescence and ATP-dependent proton influx. These reactions were abolished by proton conductors (e.g. carbonylcyanide m-chlorophenylhydrazone) by valinomycin in the presence of a high external concentration of K+, or by N,N'-dicyclohexylcarbodiimide, butyricin 7423, Dio-9, 4-chloro-7-nitrobenzofurazan or leucinostatin. Oligomycin, tributyl tin, triethyl tin and venturicidin were not inhibitory. 7. When stripped of the soluble BF1 component, such ATPase-proteoliposomes demonstrated nil ATP phosphohydrolase activity and did not display ATP-dependent enhancement of 8-anilino-naphthalene-1-sulphonate fluorescence or ATP-dependent protein influx. All of these activities were restored by incubation of the BF1-depleted proteoliposomes with a purified preparation of the soluble BF1 component.  相似文献   

5.
The three beta subunits of the isolated Escherichia coli F1-ATPase react independently with chemical reagents (Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 284, 116-120). Thus, one beta subunit is readily cross-linked to the epsilon subunit, Another reacts with N,N'-dicyclohexylcarbodiimide (DCCD), and the third one is modified on a lysine residue by 4-chloro-7-nitrobenzofurazan (NbfCl). The binding site for the ATP analog, 2-azido-ATP, was not associated with a specific type of beta subunit (Bragg, P.D. and Hou, C. (1989) Biochim. Biophys. Acta 974, 24-29). We now show that this binding site is a catalytic site as opposed to a noncatalytic nucleotide-binding site. NbfCl reacted with a tyrosine residue on the DCCD-reacting beta subunit in contrast to the different subunit location of the lysine residue labeled by the reagent. Thus, O to N transfer of the Nbf group in the free F1-ATPase involves transfer between subunits. The chemical labelling pattern of membrane-bound F1-ATPase differed from that of free F1. The strict asymmetry of labeling of the free F1-ATPase was not observed. Thus, double labeling of beta subunits by several reagents was found. This suggests that the asymmetry was not induced by chemical modification, but is inherent in the structure of the ATPase.  相似文献   

6.
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (alpha, beta and gamma) upon electrophoresis in sodium dodecyl sulphate. 2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol. 3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation. 4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate. 5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates asa single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure. 6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography. 7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP. 8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected. 9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 micron, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations. 10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores. 11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

7.
1. A further investigation has been made of the way in which the fluorescent probes 1-anilino-naphthalene-8-sulphonate and 2-(N-methyl-anilino) naphthalene-6-sulphonate report on the energised state of bovine heart submitochondrial particles. 2. A comparison of the probe responses to energisation with ATP or to a potassium diffusion potential has been made. The fluorescence enhancements seen in these two cases have different characteristics, and in view of this it is questioned whether a substrate generated energised state of a submitochondrial particle can be equated with a trans-membrane potassium diffusion potential. 3. Substitution of ITP for ATP reduces the rate at which either of the probes respond to energisation. In contrast reducing the ATPase activity of the particles by treatment with the covalent ATPase inhibitors 4-chloro-7-nitrobenzofurazan or N,N'-dicyclohexyl-carbodiimide has no effect on this rate. This finding that the rate of the fluorescence changes is directly sensitive to events at the level of the ATPase, but not to the total ATPase activity, suggests that this rate may not be controlled by a delocalised energised state. Reduction of ATPase activity decreases the extent of the fluorescence enhancement and a relationship between the change in probe fluorescence and ATPase activity is given. 4. The results in this paper are discussed in the context of the mechanisms which have been proposed to account for the fluorescence enhancements of N-aryl naphthalene sulphonate probes upon energisation of submitochondrial particles.  相似文献   

8.
The results of energy transfer experiments on the proximity of six sites on the globular head region of myosin are discussed. A large hydrophobic crevice has been detected on each myosin head which is sufficiently large to accommodate six aromatic rings simultaneously. In the crevice is located a thiol residue not involved in activation of myosin Ca2+ ATPase and a lysine residue which is specifically trinitrophenylated with 2, 4, 6-trinitrobenzenesulfonic acid. A second sulfhydryl whose modification activates the Ca2+ ATPase is located near the hydrophobic thiol site. The tryptophan whose fluorescence is enhanced by ATP binding is sufficiently close to the thiols and lysine residue to quantitatively transfer its energy to probes at these sites. The site of myosin ATPase has been tentatively located as being near the other five sites by energy transfer to or from synthetic chromophoric substrates. Implications of these results on the possibility of determining the location of the myosin light chain and actin binding sites are discussed.  相似文献   

9.
Three types of assays were used to characterize adenine nucleotide binding sites on the Ca2+, Mg2+-activated ATPase of normal Escherichia coli and its unc A 401 and unc D 412 mutants. ADP was bound mainly at a single site in normal and mutant ATPase. In the absence of divalent cations ATP was bound at a single high-affinity and three low-affinity sites in normal and unc D ATPases. The 2′,3′-dialdehyde (oADP) obtained by periodate oxidation of ADP reacted with both low- and high-affinity sites whereas oATP was bound primarily at a low-affinity site. Two types of adenine nucleotide binding sites, a high-affinity site reacting with ATP and ADP and a low-affinity site for ATP, were detected by the effects of these nucleotides on the fluorescence of the aurovertin D-ATPase complex. This high-affinity site(s) was present in normal and mutant ATPases. However, the fluorescence response at both high- and low-affinity sites was modified in the unc D ATPase as a consequence of the abnormal β subunit in this enzyme. Normal fluorescence responses were not induced by the binding of oADP or oATP to the ATPases. ATP was bound at a single site on isolated α subunits of the enzyme. Since this site was not detected in the unc A ATPase, it is unlikely to be the high-affinity site detected in the intact enzyme or the binding site for the endogenous tightly bound adenine nucleotides found in the purified ATPase. It is more probable that the site detected on the isolated α subunit from the normal enzyme is that which binds oADP since this site was absent in the unc A ATPase. Pretreatment of the normal ATPase with either N, N′-dicyclohexyl-carbodiimide (DCCD) or with 4-chloro-7-nitrobenzofurazan (NbfCl), reagents which inhibit ATPase activity by reacting with a β subunit, affected binding of oADP to α subunit(s) but had less effect with oATP. Inhibition of oADP binding could be due to conformational changes induced in the α subunit by the reaction of DCCD and NbfCl with a β subunit, or to steric reasons. If the latter hypothesis is correct, the active site of the ATPase would be at the interface between α and β subunits of the enzyme.  相似文献   

10.
1. A further investigation has been made of the way in which the fluorescent probes 1-anilino-naphthalene-8-sulphonate and 2-(N-methyl-anilino)naphthalene-6-sulphonate report on the energised state of bovine heart submitochondrial particles.2. A comparison of the probe responses to energisation with ATP or to a potassium diffusion potential has been made. The fluorescence enhancements seen in these two cases have different characteristics, and in view of this it is questioned whether a substrate generated energised state of a submitochondrial particle can be equated with a trans-membrane potassium diffusion potential.3. Substitution of ITP for ATP reduces the rate at which either of the probes respond to energisation. In contrast reducing the ATPase activity of the particles by treatment with the covalent ATPase inhibitors 4-chloro-7-nitrobenzofurazan or N,N′-dicyclohexyl-carbodiimide has no effect on this rate. This finding that the rate of the fluorescence changes is directly sensitive to events at the level of the ATPase, but not to the total ATPase activity, suggests that this rate may not be controlled by a delocalised energised state. Reduction of ATPase activity decreases the extent of the fluorescence enhancement and a relationship between the change in probe fluorescence and ATPase activity is given.4. The results in this paper are discussed in the context of the mechanisms which have been proposed to account for the fluorescence enhancements of N-aryl naphthalene sulphonate probes upon energisation of submitochondrial particles.  相似文献   

11.
The reaction of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole [NBD-Cl] with purified eel electrophax Na+ and K+ stimulated adenosine triphosphatase [(Na-K)ATPase] has been monitored by changes in the (Na-K)ATPase activity, the K+ stimulated p-nitrophenyl phosphatase [PNPase] activity, and the protein ultraviolet absorption spectrum. The NBD-Cl reacts with two tyrosine residues per mol of enzyme (approximately 6-7 nmol/mg of protein), as judged by changes in protein absorption spectra and incorporation of [14C]NBD-Cl. The modified tyrosine groups are located on the Mr = 95 000 polypeptide chain and react at different rates. Only one tyrosine modification is necessary for complete inhibition of (Na-K)ATPase activity, although both must be modified for complete inhibition of PNPase activity. Reversal of these modifications by 2-mercaptoethanol restores 65% of both activities. Na+ increases the rate of tyrosine modification, K+ decreases the rate, and ATP affords the more reactive tyrosine group complete protection. NBD-Cl modification of approximately 6-7 nmol of tyrosine groups/mg of protein results in a large decrease in ATP affinity as judged by equilibrium binding. These results are compared with similar results obtained from NBD-Cl modification of the coupling factors of oxidative phosphorylation and photophosphorylation. A model is presented suggesting an asymmetric arrangement of two 95 000 polypeptide chains with a single tyrosine residue at the ATP site.  相似文献   

12.
The effect of phosphate on the inhibition by 4-chloro-7-nitrobenzofurazan of the ATPase activity of the proton-translocating ATP synthase in heart submitochondrial particles was investigated. Binding of phosphate protected strongly against the inhibition. A dissociation constant of 0.2 mM was determined for the enzyme X Pi complex and shown to be independent of pH in the range 7.0-8.0. The protective effect of phosphate was mimicked by arsenate but not by sulphate or malonate. Similar results were obtained for the enzyme from Paracoccus denitrificans. 2,4-Dinitrophenol enhanced phosphate binding to the mitochondrial enzyme since the protective effect of phosphate was increased. The data are compatible with protection arising from binding of phosphate to a catalytic site.  相似文献   

13.
G.D. Webster  J.B. Jackson 《BBA》1978,503(1):135-154
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (α, β and γ) upon electrophoresis in sodium dodecyl sulphate.2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol.3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation.4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate.5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates as a single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure.6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography.7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP.8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected.9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 μM, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations.10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores.11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

14.
1. Of the 15 tyrosyl residues/subunit of yeast hexokinase A (ATP:D-hexose 6-phosphotransferase) only one residue is specifically modified at pH 8.0 with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. 2. The acylation of this single tyrosyl residue leads to the loss of the enzyme activities (hexokinase and ATPase) by a first-order process, which can be fully reversed by treatment with hydroxylamine. 3. ATP does not protect the enzyme against chemical modification and inactivation; however, glucose exerts a noticeable though indirect protection effect against chemical modification and inactivation. 4. The chemically modified enzyme, purified by column chromatography, has 14% of the activity of the native enzyme, but the Km for ATP-Mg or glucose remains unchanged as does the pH optimum of activity. Results of conformational studies (ultracentrifugation, fluorescence, thermostability and chemical reactivity of the sulfhydryl groups) indicate that the decrease of enzyme activity due to the modification of the tyrosyl residue is related to a localized perturbation of the enzyme active-center region.  相似文献   

15.
H I Stefanova  J M East  M G Gore  A G Lee 《Biochemistry》1992,31(26):6023-6031
The (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum was labeled with 4-(bromomethyl)-6,7-dimethoxycoumarin. It was shown that a single cysteine residue (Cys-344) was labeled on the ATPase, with a 25% reduction in steady-state ATPase activity and no reduction in the steady-state rate of hydrolysis of p-nitrophenyl phosphate. The fluorescence intensity of the labeled ATPase was sensitive to pH, consistent with an effect of protonation of a residue of pK 6.8. Fluorescence changes were observed on binding Mg2+, consistent with binding to a single site of Kd 4 mM. Comparable changes in fluorescence intensity were observed on binding ADP in the presence of Ca2+. Binding of AMP-PCP produced larger fluorescence changes, comparable to those observed on phosphorylation with ATP or acetyl phosphate. Phosphorylation with P(i) also resulted in fluorescence changes; the effect of pH on the fluorescence changes was greater than that on the level of phosphorylation measured directly using [32P]P(i). It is suggested that different conformational states of the phosphorylated ATPase are obtained at steady state in the presence of Ca2+ and ATP and at equilibrium in the presence of P(i) and absence of Ca2+.  相似文献   

16.
During the inactivation of the nucleotide-free F1-ATPase at pH 7.0, by p-fluorosulfonyl[14C]benzoyl-5'-adenosine ([14C]FSBA) in the presence of 20% glycerol, about 4.5 g atoms of 14C are incorporated/350,000 g of enzyme. Isolation of the subunits has shown: (a) over 90% of the incorporated label is associated with the alpha and beta subunits; (b) the amount of label incorporated into the alpha subunit is about 0.5 g atoms/mol which is nonspecifically associated with a number of tyrosine and lysine residues; (c) the amount of radioactivity incorporated into the beta subunit is about 0.9 g atoms/mol which correlates with the degree of inactivation of the enzyme and resides on a single tyrosine residue; (d) up to 2.2 mol of alpha subunit have been isolated from each mole of inactivated enzyme; and (e) about 2 mol of beta subunit have been isolated from each mole of inactivated enzyme. These results account for the incorporation of 4.5 g atoms of 14C which are incorporated/mol of ATPase during inactivation if there are three copies each of the alpha and beta subunit present in the enzyme. It has also been shown that 4-chloro-7-nitrobenzofurazan (NBD-Cl) and FSBA react with different tyrosine residues when they inactivate the ATPase. In addition, it has been shown that the ATPase inactivated with FSBA retains the capacity to bind up to 2.2 mol of [14C]ADP/350,000 g of enzyme.  相似文献   

17.
The Neurospora crassa plasma membrane H+-ATPase is rapidly inactivated in the presence of diethyl pyrocarbonate (DEP). The reaction is pseudo-first-order showing time- and concentration-dependent inactivation with a second-order rate constant of 385-420 M-1.min-1 at pH 6.9 and 25 degrees C. The difference spectrum of the native and modified enzyme has a maximum near 240 nm, characteristic of N-carbethoxyhistidine. No change in the absorbance of the inhibited ATPase at 278 nm or in the number of modifiable sulfhydryl groups is observed, indicating that the inhibition is not due to tyrosine or cysteine modification, and the inhibition is irreversible, ruling out serine residues. Furthermore, pretreatment of the ATPase with pyridoxal phosphate/NaBH4 under the conditions of the DEP treatment does not inhibit the ATPase and does not alter the DEP inhibition kinetics, indicating that the inactivation by DEP is not due to amino group modification. The pH dependence of the inactivation reaction indicates that the essential residue has a pKa near 7.5, and the activity lost as a result of H+-ATPase modification by DEP is partially recovered after hydroxylamine treatment at 4 degrees C. Taken together, these results strongly indicate that the inactivation of the H+-ATPase by DEP involves histidine modification. Analyses of the inhibition kinetics and the stoichiometry of modification indicate that among eight histidines modified per enzyme molecule, only one is essential for H+-ATPase activity. Finally, ADP protects against inactivation by DEP, indicating that the essential residue modified may be located at or near the nucleotide binding site.  相似文献   

18.
The beta subunits of the Escherichia coli F1-ATPase react independently with chemical reagents (Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248, 116-120). Thus, one beta subunit is readily crosslinked to the epsilon subunit, another reacts with N-N'-dicyclohexylcarbodiimide (DCCD), and a third one is modified by 4-chloro-7-nitrobenzofurazan (NbfCl). This asymmetric behaviour is not due to the association of the delta and epsilon subunits of the ATPase molecule with specific beta subunits since it is maintained in a delta, epsilon-deficient form of the enzyme.  相似文献   

19.
In the previous paper we demonstrated that uridine-5'-beta-1-(5-sulfonic acid) naphthylamidate (UDPAmNS) is a stacked and quenched fluorophore that shows severalfold enhancement of fluorescence in a stretched conformation. UDPAmNS was found to be a powerful competitive inhibitor (Ki = 0.2 mM) for UDP-glucose-4-epimerase from Escherichia coli. This active site-directed fluorophore assumed a stretched conformation on the enzyme surface, as was evidenced by full enhancement of fluorescence in saturating enzyme concentration. Complete displacement of the fluorophore by UDP suggested it to bind to the substrate binding site of the active site. Analysis of inactivation kinetics in presence of alpha,beta-diones such as phenylglyoxal, cyclohaxanedione, and 2,3-butadione suggested involvement of the essential arginine residue in the overall catalytic process. From spectral analysis, loss of activity could also be directly correlated with modification of only one arginine residue. Protection experiments with UDP showed the arginine residue to be located in the uridyl phosphate binding subsite. Unlike the native enzyme, the modified enzyme failed to show any enhancement of fluorescence with UDPAmNS clearly demonstrating the role of the essential arginine residue in stretching and binding of the substrate. The potential usefulness of such stacked and quenched nucleotide fluorophores has been discussed.  相似文献   

20.
P A Fortes 《Biochemistry》1977,16(3):531-540
Anthroylouabain (AO) was synthesized by reaction of anthracene-9-carboxylic chloride with ouabain. Nuclear magnetic resonance spectroscopy of AO suggests that the anthracene is esterfied to the rhamnose in the glycoside. AO inhibits Na-K ATPase from human red cells, eel electroplax and rabbit and dog kidney with a KI less than 1muM. AO bound to rabbit or dog kidney Na-K ATPase shows enhanced fluorescence and characteristic spectral shifts. AO binding requires Mg and is optimum in the presence of Mg + Pi or MgATP + Na; ouabain prevents AO binding and fluorescence enhancement if added before AO or reverses it if added after AO is bound. Na inhibits AO binding in the presence of Mg + Pi and K inhibits it in the presence of MgATP + Na. AO binding and dissociation rate constants measured by fluorescence agree qualitatively with reported measurements for ouabain, using other methods, although AO shows faster kinetics than ouabain. Dissociation constants obtained from kinetic measurements are 1.5 X 10(-7) and 1.8 X 10(-7) M for the MgATP + Na complex and Mg + Pi complex, respectively. KD from fluorescence titrations is 2.3 X 10(-7) M for the latter. The enzyme has 2-2.5 nmol of AO binding sites/mg of protein. No differences in the fluorescence parameters of the Mg + Pi or MgATP + Na complexes were observed, suggesting that the same enzyme conformation binds AO under both ligand conditions. Comparison of the AO fluorescence parameters in the enzyme with those of model systems suggests that the binding site is hydrophobic and/or viscous and shielded from H2O. The results indicate that AO is a specific fluorescent probe of the cardiac glycoside receptor of the Na-K ATPase. Possible applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号