首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropomyosin prevents depolymerization of actin filaments from the pointed end   总被引:13,自引:0,他引:13  
Regulation of the pointed, or slow-growing, end of actin filaments is essential to the regulation of filament length. The purpose of this study is to investigate the role of skeletal muscle tropomyosin (TM) in regulating pointed end assembly and disassembly in vitro. The effects of TM upon assembly and disassembly of actin monomers from the pointed filament end were measured using pyrenyl-actin fluorescence assays in which the barbed ends were capped by villin. Tropomyosin did not affect pointed end elongation; however, filament disassembly from the pointed end stopped in the presence of TM under conditions where control filaments disassembled within minutes. The degree of protection against depolymerization was dependent upon free TM concentration and upon filament length. When filaments were diluted to a subcritical actin concentration in TM, up to 95% of the filamentous actin remained after 24 h and did not depolymerize further. Longer actin filaments (150 monomers average length) were more effectively protected from depolymerization than short filaments (50 monomers average length). Although filaments stopped depolymerizing in the presence of TM, they were not capped as shown by elongation assays. This study demonstrates that a protein, such as TM, which binds to the side of the actin filament can prevent dissociation of monomers from the end without capping the end to elongation. In skeletal muscle, tropomyosin could prevent thin filament disassembly from the pointed end and constitute a mechanism for regulating filament length.  相似文献   

2.
Kinetics of actin elongation and depolymerization at the pointed end   总被引:2,自引:0,他引:2  
We measured the rate of elongation at the pointed filament end with increasing concentrations of G-actin [J(c) function] using villin-capped actin filaments of very small (actin/villin = 3, VA3) and relatively large size (actin/villin = 18, VA18) as nuclei for elongation. The measurements were made under physiological conditions in the presence of both Mg2+ and K+. In both cases the J(c) function was nonlinear. In contrast to the barbed filament end, however, the slope of the J(c) function sharply decreased rather than increased when the monomer concentration was lowered to concentrations near and below the critical concentration c infinity. At zero monomer concentration, depolymerization at the pointed end was very slow with a rate constant of 0.02 s-1 for VA18. When VA3 was used, the nonlinearity of the J(c) function was greatly exaggerated, and the nuclei elongated at actin concentrations below the independently measured critical concentration for the pointed end. This is consistent with and confirms our previous finding [Weber, A., Northrop, J., Bishop, M. F., Ferrone, F. A., & Mooseker, M. S. (1987) Biochemistry (preceding paper in the issue)] that at an actin-villin ratio of 3 a significant fraction of the villin is free and that a series of steady states exist between villin-actin complexes of increasing size and G-actin. The rate constant of elongation seems to increase with increasing G-actin concentrations because of increasing conversion of free villin into villin-actin oligomers during the period of the measurement of the initial elongation rate. The villin-actin oligomers have a much higher rate constant of actin binding than does free villin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
K O Broschat  A Weber  D R Burgess 《Biochemistry》1989,28(21):8501-8506
Tropomyosin is postulated to confer stability to actin filaments in nonmuscle cells. We have found that a nonmuscle tropomyosin isolated from the intestinal epithelium can directly stabilize actin filaments by slowing depolymerization from the pointed, or slow-growing, filament end. Kinetics of elongation and depolymerization from the pointed end were measured in fluorescence assays using pyrenylactin filaments capped at the barbed end by villin. The initial pointed end depolymerization rate in the presence of tropomyosin averaged 56% of the control rate. Elongation from the pointed filament end in the presence of tropomyosin occurred at a lower free G-actin concentration, although the on rate constant, kappa p+, was not greatly affected. Furthermore, in the presence of tropomyosin, the free G-actin concentration was lower at steady state. Therefore, nonmuscle tropomyosin stabilizes the pointed filament end by lowering the off rate constant, kappa p-.  相似文献   

4.
Tropomodulin caps the pointed ends of actin filaments   总被引:10,自引:3,他引:7       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1627-1635
Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.  相似文献   

5.
Microvilli are actin-based protrusions found on the surface of diverse cell types, where they amplify membrane area and mediate interactions with the external environment. In the intestinal tract, these protrusions play central roles in nutrient absorption and host defense and are therefore essential for maintaining homeostasis. However, the mechanisms controlling microvillar assembly remain poorly understood. Here we report that the multifunctional actin regulator cordon bleu (COBL) promotes the growth of brush border (BB) microvilli. COBL localizes to the base of BB microvilli via a mechanism that requires its proline-rich N-terminus. Knockdown and overexpression studies show that COBL is needed for BB assembly and sufficient to induce microvillar growth using a mechanism that requires functional WH2 domains. We also find that COBL acts downstream of the F-BAR protein syndapin-2, which drives COBL targeting to the apical domain. These results provide insight into a mechanism that regulates microvillar growth during epithelial differentiation and have significant implications for understanding the maintenance of intestinal homeostasis.  相似文献   

6.
7.
We examined the nucleated polymerization of actin from the two ends of filaments that comprise the microvillus (MV) core in intestinal epithelial cells by electron microscopy. Three different in vitro preparations were used to nucleate the polymerization of muscle G- actin: (a) MV core fragments containing "barbed" and "pointed" filament ends exposed by shear during isolation, (b) isolated, membrane-intact brush borders, and (c) brush borders demembranated with Triton-X 100. It has been demonstrated that MV core fragments nucleate filament growth from both ends with a strong bias for one end. Here we identify the barbed end of the core fragment as the fast growing end by decoration with myosin subfragment one. Both cytochalasin B (CB) and Acanthamoeba capping protein block filament growth from the barbed but not the pointed end of MV core fragments. To examine actin assembly from the naturally occurring, membrane-associated ends of MV core filaments, isolated membrane-intact brush borders were used to nucleate the polymerization of G-actin. Addition of salt (75 mM KCl, 1 mM MgSO4) to brush borders preincubated briefly at low ionic strength with G- actin induced the formation of 0.2-0.4 micron "growth zones" at the tips of microvilli. The dense plaque at the tip of the MV core remains associated with the membrane and the presumed growing ends of the filaments. We also observed filament growth from the pointed ends of core filaments in the terminal web. We did not observe filament growth at the membrane-associated ends of core filaments when the latter were in the presence of 2 microM CB or if the low ionic strength incubation step was omitted. Addition of G-actin to demembranated brush borders, which retain the dense plaque on their MV tips, resulted in filament growth from both ends of the MV core. Again, 2 microM CB blocked filament growth from only the barbed (tip) end of the core. The dense plaque remained associated with the tip-end of the core in the presence of CB but usually was dislodged in control preparations where nucleated polymerization from the tip-end of the core occurred. Our results support the notion that microvillar assembly and changes in microvillar length could occur by actin monomer addition/loss at the barbed, membrane-associated ends of MV core filaments.  相似文献   

8.
The phototransductive microvilli of arthropod photoreceptors each contain an axial cytoskeleton. The present study shows that actin filaments are a component of this cytoskeleton in Drosophila. Firstly, actin was detected in the rhabdomeral microvilli and in the subrhabdomeral cytoplasm by immunogold labeling with antiactin. Secondly, the rhabdomeres were labeled with phalloidin, indicating the presence of filamentous actin. Finally, the actin filaments were decorated with myosin subfragment-1. The characteristic arrowhead complex formed by subfragment-1 decoration points towards the base of the microvilli, so that the fast growing end of each filament is at the distal end of the microvillus, where it is embedded in a detergent-resistant cap. Each microvillus contains more than one actin filament. Decorated filaments extend the entire length of each microvillus and project into the subrhabdomeral cytoplasm. This organization is comparable to that of the actin filaments in intestinal brush border microvilli. Similar observations were made with the photoreceptor microvilli of the crayfish, Procambarus. Our results provide an indication as to how any myosin that is associated with the rhabdomeres might function.  相似文献   

9.
Terminal webs prepared from mouse intestinal epithelial cells were examined by the quick-freeze, deep-etch, and rotary-replication method. The microvilli of these cells contain actin filaments that extend into the terminal web in compact bundles. Within the terminal web these bundles remain compact; few filaments are separated from the bundles and fewer still bend towards the lateral margins of the cell. Decoration with subfragment 1 (S1) of myosin confirmed that relatively few actin filaments travel horizontally in the web. Instead, between actin bundles there are complicated networks of the fibrils. Here we present two lines of evidence which suggest that myosin is one of the major cross-linkers in the terminal web. First, when brush borders are exposed to 1 mM ATP in 0.3 M KCl, they lose their normal ability to bind antimyosin antibodies as judged by immunofluorescence, and they lose the thin fibrils normally found in deep-etch replicas. Correspondingly, myosin is released into the supernatant as judged by SDS gel electrophoresis. Second, electron microscope immunocytochemistry with antimyosin antibodies followed by ferritin- conjugated second antibodies leads to ferritin deposition mainly on the fibrils at the basal part of rootlets. Deep-etching also reveals that the actin filament bundles are connected to intermediate filaments by another population of cross-linkers that are not extracted by ATP in 0.3 M KCl. From these results we conclude that myosin in the intestinal cell may not only be involved in a short range sliding-filament type of motility, but may also play a purely structural role as a long range cross-linker between microvillar rootlets.  相似文献   

10.
Functional properties of the protein complex from bovine brain that shortens actin filaments are described. In the presence of Ca2+ complex shortens actin filaments and increases the initial rate of actin polymerization. In the absence of free calcium ions the complex loses its accelerating effect on actin polymerization, but still possesses actin filament shortening activity. Neither phalloidin nor tropomyosin prevent the shortening of actin filaments induced by the protein complex. Therefore the protein complex causes the fragmentation of actin filament. The data on actin polymerization in the presence of F-actin nuclei have indicated that the protein complex inhibits the elongation step of actin polymerization. The analysis of elongation in the presence of both the protein complex and cytochalasin D has demonstrated that the inhibition occurs on the fast-growing end of actin filaments.  相似文献   

11.
Indirect immunofluorescence microscopy was used to localize microfilament-associated proteins in the brush border of mouse intestinal epithelial cells. As expected, antibodies to actin decorated the microfilaments of the microvilli, giving rise to a very intense fluorescence. By contrast, antibodies to myosin, tropomyosin, filamin, and alpha-actinin did not decorate the microvilli. All these antibodies, however, decorated the terminal web region of the brush border. Myosin, tropomyosin, and alpha-actinin, although present throughout the terminal web, were found to be preferentially located around the periphery of the organelle. Therefore, two classes of microfilamentous structures can be documented in the brush border. First, the highly ordered microfilaments which make up the cores of the microvilli apparently lack the associated proteins. Second, seemingly less-ordered microfilaments are found in the terminal web, in which region the myosin, tropomyosin, filamin and alpha-actinin are located.  相似文献   

12.
13.
《The Journal of cell biology》1996,135(5):1309-1321
Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non- membrane-associated protein translation may be occurring in vivo.  相似文献   

14.
Fragmin from plasmodium of Physarum polycephalum binds G-actin and severs F-actin in the presence of Ca2+ over 10(-6) M. The fragmin-actin complex consisting of fragmin and G-actin nucleates actin polymerization and caps the barbed (fast growing) end of F-actin, regardless of the concentrations of Ca2+, and the actin filaments are shortened. Actin kinase purified from plasmodium abolishes the nucleation and capping activities of the complex by phosphorylating actin of the fragmin-actin complex (Furuhashi, K., and Hatano, S. (1990) J. Cell. Biol. 111, 1081-1087). This inactivation of the complex leads to production of long actin filaments. We obtained evidence that Physarum actin is phosphorylated by actin kinase at Thr-201, and probably at Thr-202 and/or Thr-203, with 1 mol of phosphate distributed among them. This finding raises the possibility that the site of phosphorylation, Thr-201 to Thr-203, is positioned on the pointed (slow growing) end domain of the actin molecule, because growth of actin filaments from the fragmin-actin complex occurs only from the pointed end. These observations are consistent with a model of the three-dimensional structure of G-actin. Inactivation of the fragmen-actin complex may follow phosphorylation of the pointed end domain of actin.  相似文献   

15.
Tropomodulins are a family of important regulators of actin dynamics at the pointed ends of actin filaments. Four isoforms of tropomodulin, Tmod1‐Tmod4, are expressed in vertebrates. Binding of tropomodulin to the pointed end is dependent on tropomyosin, an actin binding protein that itself is represented in mammals by up to 40 isoforms. The understanding of the regulatory role of the tropomodulin/tropomyosin molecular diversity has been limited due to the lack of a three‐dimensional structure of the tropomodulin/tropomyosin complex. In this study, we mapped tropomyosin residues interacting with two tropomyosin‐binding sites of tropomodulin and generated a three‐dimensional model of the tropomodulin/tropomyosin complex for each of these sites. The models were refined by molecular dynamics simulations and validated via building a self‐consistent three‐dimensional model of tropomodulin assembly at the pointed end. The model of the pointed‐end Tmod assembly offers new insights in how Tmod binding ensures tight control over the pointed end dynamics.  相似文献   

16.
M Oosawa  K Maruyama 《FEBS letters》1987,213(2):433-437
Phalloidin (2 mol per mol actin)-treated pyrenyl F-actin showed a critical concentration of 1.8 microM in the presence of 10 mM KCl, 0.2 mM ADP, and 5 mM Tris-HCl buffer, pH 8.0 at 25 degrees C. The filament weight concentration did not change at all during and after sonication, yet degrees of flow birefringence increased and the filament number concentration decreased after the termination of sonication. The latter changes were not affected by EDTA, but inhibited by beta-actinin. These observations suggest that reannealing of short pieces of phalloidin-treated actin filaments fragmented during sonication takes place during recovery after sonication.  相似文献   

17.
18.
In striated muscle the pointed ends of polar actin filaments are directed toward the center of the sarcomer. Formed filaments keep a constant length of about 1 μm. As polymerization and depolymerization at free pointed ends are not sufficiently slow to account for the constant length of the filaments, we searched for proteins which occur in sarcomers and can stabilize the pointed ends of actin filaments. We observed that tropornyosintroponin complex reduces the rate of association and dissociation of actin molecules at the pointed ends more than 30-fold. On the average, every 600 s one association or dissociation reaction has been found to occur at the pointed ends near the critical actin monomer concentration.  相似文献   

19.
T Keiser  A Schiller  A Wegner 《Biochemistry》1986,25(17):4899-4906
The nonlinear increase of the elongation rate of actin filaments above the critical monomer concentration was investigated by nucleated polymerization of actin. Significant deviations from linearity were observed when actin was polymerized in the presence of magnesium ions. When magnesium ions were replaced by potassium or calcium ions, no deviations from linearity could be detected. The nonlinearity was analyzed by two simple assembly mechanisms. In the first model, if the ATP hydrolysis by polymeric actin is approximately as fast as the incorporation of monomers into filaments, terminal subunits of lengthening filaments are expected to carry to some extent ADP. As ADP-containing subunits dissociate from the ends of actin filaments faster than ATP-containing subunits, the rate of elongation of actin filaments would be nonlinearly correlated with the monomer concentration. In the second model (conformational change model), actin monomers and filament subunits were assumed to occur in two conformations. The association and dissociation rates of actin molecules in the two conformations were thought to be different. The equilibrium distribution between the two conformations was assumed to be different for monomers and filament subunits. The ATP hydrolysis was thought to lag behind polymerization and conformational change. As under the experimental conditions the rate of ATP hydrolysis by polymeric actin was independent of the concentration of filament ends, the observed nonlinear increase of the rate of elongation with the monomer concentration above the critical monomer concentration was unlikely to be caused by ATP hydrolysis at the terminal subunits. The conformational change model turned out to be the simplest assembly mechanism by which all available experimental data could be explained.  相似文献   

20.
Tropomyosin inhibition of the rate of spontaneous polymerization of actin is associated with binding of tropomyosin to actin filaments. Rate constants determined by using a direct electron microscopic assay of elongation showed that alpha alpha- and alpha beta-tropomyosin have a small or no effect on the rate of elongation at either end of the filaments. The most likely explanation for the inhibition of the rate of polymerization of actin in bulk samples is that tropomyosin reduces the number of filament ends by mechanical stabilization of the filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号