首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Estimates of endemic and non‐endemic native vascular plant species in each of the three Western Australian Botanical Provinces were made by East in 1912 and Beard in 1969. The present paper contains an updated assessment of species endemism in the State. Location Western Australia comprises one third of the continental Australian land mass. It extends from 13° to 35° S and 113° to 129° W. Methods Western Australia is recognized as having three Botanical Provinces (Northern, Eremaean and South‐West) each divided into a number of Botanical Districts. Updated statistics for number of species and species endemism in each Province are based on the Census of Western Australian Plants data base at the Western Australian Herbarium ( Western Australian Herbarium, 1998 onwards). Results The number of known species in Western Australia has risen steadily over the years but reputed endemism has declined in the Northern and Eremaean Provinces where cross‐continental floras are common. Only the isolated South‐West Province retains high rates of endemism (79%). Main conclusions With 5710 native species, the South‐West Province contains about the same number as the California Floristic Province which has a similar area. The Italian mediterranean zone also contains about this number but in a smaller area, while the much smaller Cape Floristic Region has almost twice as many native species. The percentage of endemic species is highest at the Cape, somewhat less in south‐western Australia and less again in California. Italy, at 12.5%, has the lowest value. Apart from Italy, it is usual for endemism to reach high values in the largest plant families. In Western Australia, these mainly include woody sclerophyll shrubs and herbaceous perennials with special adaptations to environmental conditions. While those life forms are prominent in the Cape, that region differs in the great importance of herbaceous families and succulents, both of which are virtually absent from Western Australia. In California and Italy, most endemics are in families of annual, herbaceous perennial and soft shrub plants. It is suggested that the dominant factor shaping the South‐West Province flora is the extreme poverty of the area’s soils, a feature that emphasizes sclerophylly, favours habitat specialization and ensures relatively many local endemic species.  相似文献   

2.
Plant species richness, endemism, and genetic resources in Namibia   总被引:1,自引:0,他引:1  
Namibia is a floristically diverse, arid to mesic country, with several highly distinct taxa. Including naturalized plants, there are about 4334 vascular plant species and infraspecific taxa within the country's borders, a substantial increase from the existing major reference work. Dominant families are the Poaceae (422species), Fabaceae (377), Asteraceae (385) and Mesembryanthemaceae (177). Freshwater algae and most other groups of lower plants remain poorly known. Concentrations of plant species richness are found in the Succulent Karoo biome, Kaokoveld, Otavi highland/Karstveld area, Okavango Basin, and Khomas highlands. Recent studies have led to a new estimate of 687 endemic plant species, defined as those contained wholly within Namibia's borders, amounting to about 17% of the Namibian flora. At least a further 275 species are Namib Desert endemics shared between the Kaokoveld and southern Angola (75spp.) and between the Succulent Karoo and northwestern South Africa (200spp.). Research on plant genetic resources is focused on species of potential or actual agricultural importance, such as pearl millet, Pennisetum glaucum, and cucurbits. Many wild plants have considerable genetic diversity and development potential. Primary threats to plant diversity fall in the category of poor land management and inappropriate development.  相似文献   

3.
The Convention on Biological Diversity aims to encourage and enable countries to conserve biological diversity, to use its components sustainably and to share benefits equitably. Species richness and endemism are two key attributes of biodiversity that reflect the complexity and uniqueness of natural ecosystems. National data on vertebrates and higher plants indicate global concentrations of biodiversity and can assist in defining priorities for action. Projections indicate that species and ecosystems will be at maximum risk from human activities during the next few decades. Prompt action by the world community can minimise the eventual loss of species. Highest priorities should be to: (i) strengthen the management of ecosystems containing a large proportion of global biodiversity; (ii) help developing countries complete their biodiversity strategies and action plans, monitor their own biodiversity, and establish and maintain adequate national systems of conservation areas; (iii) support actions at the global level, providing benefit to all countries in managing their own biodiversity. Generally, resources will best be spent in safeguarding ecosystems and habitats that are viable and important for global biodiversity, and which are threatened by factors that can be controlled cost-effectively. Other important criteria are representativeness, complementarity and insurance.  相似文献   

4.
如何准确地模拟物种宏观丰富度格局和特有性中心是生物多样性保护工作的重点,也是生物地理学的热点话题.西南地区是我国壳斗科植物最丰富的地区之一,但物种多样性格局及环境驱动机制尚不清楚.本研究基于西南地区161种壳斗科植物7258个分布点位数据,利用点格局法和物种分布模型两种方式构建了物种丰富度、加权特有性指数和校正加权特有...  相似文献   

5.
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.  相似文献   

6.
7.
1. Identifying the macro-scale patterns and the underlying mechanisms of species richness are key aspects of biodiversity-related research. In China, previous studies on the mechanisms underlying insect richness have primarily focused on the current ecological conditions. Therefore, the impact of historical climate change on these mechanisms is less well understood. 2. Here, we use members of the Delphacidae family to evaluate the relative impact of the current environmental conditions and that of the Last Glacial Maximum on total species richness and endemism. Total species richness and endemic species richness were summed in 1° × 1° grid cells that the insects occupied. Generalised linear models, simultaneous autoregressive models, and random forest models were used to assess the effects of different environmental factors on total species richness and endemism. 3. The two patterns of species richness are jointly regulated by the current environment and the Last Glacial Maximum, but their key determinants differ. Winter coldness and the temperature annual range strongly affected the total species richness, but temperature variation during the Last Glacial Maximum also played an important role in the development of species richness. The distribution of endemic species was most strongly affected by the Last Glacial Maximum temperature change. 4. The studies confirm that historical climate change contributes to patterns of insect species richness, particularly patterns of endemism. Considering that China was mildly affected by the last glacial period, we propose that the incorporation of historical climate data into such studies will provide a better understanding of the underlying mechanisms.  相似文献   

8.
The southern Australian marine macroalgal flora has the highest levels of species richness and endemism of any regional macroalgal flora in the world. Analyses of species composition and distributions for the southern Australian flora have identified four different floristic elements, namely the southern Australian endemic element, the widely distributed temperate element, the tropical element and a cold water element. Within the southern Australian endemic element, four species distribution patterns are apparent, thought to largely result from the Jurassic to Oligocene fragmentation of East Gondwana, the subsequent migration of Tethyan ancestors from the west Australian coast and the later invasion of high latitude Pacific species. Climatic deterioration from the late Eocene to the present is thought responsible for the replacement of the previous tropical south coast flora by an endemic temperate flora which has subsequently diversified in response to fluctuating environmental conditions, abundant rocky substrata and substantial habitat heterogeneity. High levels of endemism are attributed to Australia's long isolation and maintained, as is the high species richness, by the lack of recent mass extinction events. The warm water Leeuwin Current has had profound influence in the region since the Eocene, flowing to disperse macroalgal species onto the south coast as well as ameliorating the local environment. It is now evident that the high species richness and endemism we now observe in the southern Australian marine macroalgal flora can be attributed to a complex interaction of biogeographical, ecological and phylogenetic processes over the last 160 million years.  相似文献   

9.
Aim To assemble a continental‐scale data set of all available anuran records and investigate trends in endemism and species richness for the Anura. Location Continental Australia. Methods 97,338 records were assembled, covering 75% of the continent. A neighbourhood analysis was applied to recorded locations for each species to measure richness and endemism for each half‐degree grid square (c. 50 km) in the continent. This analysis was performed for all anurans, and also for each of the three main anuran families found in Australia. A Monte Carlo simulation was used to test a null hypothesis that observed centres of endemism could result simply from an unstructured overlapping of species ranges of different sizes. Results Eleven main centres of anuran endemism were identified, the most important being the Wet Tropics and the south‐west near Bunbury‐Augusta and near Walpole. With the exception of south‐western Australia, all of the identified significant endemic centres are in the northern half of the continent. The regions identified as significant for endemism differed from those identified for species richness and are more localized. Species richness is greatest in the Wet Tropics and the Border Ranges. High species richness also occurs in several areas not previously identified along the east and northern coasts. Main conclusions Weighted endemism provides a new approach for determining significant areas for anuran conservation in Australia and areas can be identified that could be targeted for beneficial conservation gains. Patterns in endemism were found to vary markedly between the three main anuran families, and south‐eastern Australia was found to be far less significant than indicated by previous studies. The need for further survey work in inland Australia is highlighted and several priority areas suggested. Our results for species richness remain broadly consistent with trends previously observed for the Australian Anura.  相似文献   

10.
The present paper analyzed 239 endemic genera in 67 families in the flora of seed plants in China. The results showed that there are five families containing more than ten endemic genera, namely, Gesneriaceae (27), which hereafter refers to the number of endemic genera in China, Composite (20), Labiatae (12), Cruciferae (11), and Umbelliferae (10), 15 families with two endemic genera, and another 30 families with only one endemic genus. Four monotypic families (Ginkgoaceae, Davidiaceae, Eucommiaceae and Acanthochlamydaceae) are the most ancient, relict and characteristic in the flora of seed plants in China. Based on integrative data of systematics, fossil history, and morphological and molecular evidence of these genera, their origin, evolution and relationships were discussed. In gymnosperms, all endemic genera are relicts of the Arctic-Tertiary flora, having earlier evolutionary history, and can be traced back to the Cretaceous or to the Jurassic and even earlier. In angiosperms, the endemic genera are mostly relicts, and are represented in all lineages in the “Eight-Class System of Classification of Angiosperms”, and endemism can be found in almost every evolutionary stage of extant angiosperms. The relict genera once occupied huge areas in the northern hemisphere in the Tertiary or the late Cretaceous, while neo-endemism mostly originated in the late Tertiary. They came from Arctic-Tertiary, Paleo-tropical-Tertiary and Tethys-Tertiary florisitic elements, and the blend of the three elements with many genera of autochthonous origin. The endemism was formed when some dispersal routes such as the North Atlantic Land Bridge, and the Bering Bridge became discontinuous during the Tertiary, as well as the climate change and glaciations in the late Tertiary and the Quaternary. Therefore, the late Tertiary is the starting point of extant endemism of the flora in China. __________ Translated from Acta Botanica Yunnanica, 2005, 27(6): 577–604 [译自: 云南植物研究]  相似文献   

11.
The present paper analyzed 239 endemic genera in 67 families in the flora of seed plants in China.The results showed that there are five families containing more than ten endemic genera,namely,Gesneriaceae (27),which hereafter refers to the number of endemic genera in China,Composite (20),Labiatae (12),Cruciferae (11),and Umbelliferae (10),15 families with two endemic genera,and another 30 families with only one endemic genus.Four monotypic families (Ginkgoaceae,Davidiaceae,Eucommiaceae and Acanthochlamydaceae)are the most ancient,relict and characteristic in the flora of seed plants in China.Based on integrative data of systematics,fossil history,and morphological and molecular evidence of these genera,their origin,evolution and relationships were discussed.In gymnosperms,all endemic genera are relicts of the Arctic-Tertiary flora,having earlier evolutionary history,and can be traced back to the Cretaceous or to the Jurassic and even earlier.In angiosperms,the endemic genera are mostly relicts,and are represented in all lineages in the"Eight-Class System ofClassification of Angiosperms",and endemism can be found in almost every evolutionary stage of extant angiosperms.The relict genera once occupied huge areas in the northern hemisphere in the Tertiary or the late Cretaceous,while neo-endemism mostly originated in the late Tertiary.They came from Arctic-Tertiary,Paleo-tropical-Tertiary and Tethys-Tertiary florisitic elements,and the blend of the three elements with many genera of autochthonous origin.The endemism was formed when some dispersal routes such as the North Atlantic Land Bridge,and the Bering Bridge became discontinuous during the Tertiary,as well as the climate change and glaciations in the late Tertiary and the Quaternary.Therefore,the late Tertiary is the starting point of extant endemism of the flora in China.  相似文献   

12.
Patterns in species richness and endemism of European freshwater fish   总被引:4,自引:0,他引:4  
Aim  To analyse the patterns in species richness and endemism of the native European riverine fish fauna, in the light of the Messinian salinity crisis and the Last Glacial Maximum (LGM).
Location  European continent.
Methods  After gathering native fish faunistic lists of 406 hydrographical networks, we defined large biogeographical regions with homogenous fish fauna, based on a hierarchical cluster analysis. Then we analysed and compared the patterns in species richness and endemism among these regions, as well as species–area relationships.
Results  Among the 233 native species present in the data set, the Cyprinidae family was strongly dominant (> 50% of the total number of species). Seven biogeographical regions were defined: Western Peri-Mediterranea, Central Peri-Mediterranea, Eastern Peri-Mediterranea, Ponto-Caspian Europe, Northern Europe, Central Europe and Western Europe. The highest regional species richness was observed for Central Peri-Mediterranea and Ponto-Caspian Europe. The highest endemic richness was found in Central Peri-Mediterranea. Species–area relationships were characterized by high slope values for Peri-Mediterranean Europe and low values for Central and Western Europe.
Main conclusions  The results were in agreement with the 'Lago Mare' hypothesis explaining the specificity of Peri-Mediterranean fish fauna, as well as with the history of recolonization of Central and Western Europe from Ponto-Caspian Europe following the LGM. The results also agreed with the mechanisms of speciation and extinction influencing fish diversity in hydrographical networks. We advise the use of the seven biogeographical regions for further studies, and suggest considering Peri-Mediterranean Europe and Ponto-Caspian Europe as 'biodiversity hotspots' for European riverine fish.  相似文献   

13.
Abstract Aims Ants (Hymenoptera: Formicidae) of the Baja California peninsula are poorly known, with information based largely on scattered museum and literature records. We provide the first comprehensive account of ant species occurring on the peninsula, we examine distribution patterns, and we assess the ‘peninsular effect’ which predicts that species richness declines from the base to the tip of a peninsula. Location Peninsula of Baja California, Mexico. Methods Data collection involved examining, identifying and recording label data from c. 2350 series of ants. These records provide a provisional, if incomplete, species list. We applied the incidence‐based estimator, Chao‐2, to our data base of specimen records to estimate the total number of ant species on the peninsula. We assessed endemism by comparing our peninsular species list to those from adjacent states. The peninsular effect was tested by comparing genus and species level richness between the two states of Baja California, and across five latitudinal blocks. Results We document 170 native ant species in thirty‐three genera, plus six non‐native species, in Baja California. It seems likely that additional species remain to be discovered: the Chao‐2 estimator of species richness, at 206.0 species, is about 20% higher than our observed species richness. About 30% of the species and 20% of the genera are restricted within Baja California to the relatively mesic California Floristic Province of north‐western Baja California. Nearly all of these species also occur in California. Forty‐seven species (27.6%) are peninsula endemics. Using our entire data set, the peninsular effect appears to be strong, with about twice as many species in the northern state of Baja California than are recorded from the southern state of Baja California Sur; the ratio of genera is 33 to 24. However, this effect becomes weak at the species level and absent at the genus level when minimizing habitat effects by omitting species restricted to the California Floristic Province. At a finer scale, across latitudinal blocks of about 1.9°, the number of species declines towards central portions of the peninsula and then increases in the Cape Region. Nine ant species display strongly disjunct distributions, and these occur in two general patterns: peninsula disjuncts and peninsula–mainland disjuncts. Main conclusions The Baja California peninsula supports a diverse and distinctive ant fauna, with the proportion of endemic species similar to that displayed by plants. Patterns of species and genus richness across the five latitudinal blocks provide poor support for the peninsular effect. Moreover, habitat diversity, especially that related to topographic relief, appears to be the most important factor affecting the gradient of ant species richness in Baja California. Additional collections are needed to develop a more complete species list and to determine the boundaries and status of many species. Nevertheless, the present data base provides a useful starting point for understanding the evolution of ant assemblages in Baja California and for comparison with peninsular patterns in other taxa.  相似文献   

14.
An updated checklist of the vascular flora native to Italy   总被引:1,自引:0,他引:1  
An updated inventory of the native vascular flora of Italy, providing details on the occurrence at regional level, is presented. The checklist includes 8195 taxa (6417 species and 1778 subspecies), distributed in 1092 genera and 152 families; 23 taxa are lycophytes, 108 ferns and fern allies, 30 gymnosperms and 8034 angiosperms. The taxa currently occurring in Italy are 7483, while 568 taxa have not been confirmed in recent times, 99 are doubtfully occurring in the country and 19 are data deficient. Out of the 568 not confirmed taxa, 26 are considered extinct or possibly extinct.  相似文献   

15.
Aim  To develop an approach for assessing the spatial scale of centres of endemism among species level data.
Location Australia.
Methods  Endemism is inherently scale dependent. Therefore, the Corrected Weighted Endemism (CWE) index used by Crisp et al. [ J. Biogeogr. (2001)28:183] is extended to account for species samples in local neighbourhoods as a Spatial CWE index. This then allows an analysis of how the degree of endemism of a location (cell) changes with spatial scale. The quality of the Spatial CWE index results are assessed using three spatial randomizations at the species level with and without preserving species richness and distributional patterns. We show that CWE is equivalent to beta diversity and predict that it should show high rates of change around centres of endemism.
Results  Similar patterns to those found by Crisp et al. using a data set of vascular flora from Australia are retrieved, but the extent to which they are scale dependent is more easily identified. For example, the Central Australian centre discounted by Crisp et al. is identified when a three-cell radius neighbourhood is used. However, the level of endemism in this centre is no greater than in the margins of many of the coastal centres of endemism. Most of the identified centres of endemism are better than random at all scales and are increasingly so as the spatial scale increases. As predicted, the highest rate of change in Spatial CWE (beta diversity) is most often between zero- and one-cell radius neighbours in most centres of endemism.
Main conclusions  The explicit incorporation of geographical space in analyses allows for a greater understanding of the scale-dependence of phenomena, in this case endemism and beta diversity.  相似文献   

16.
17.
云南蕨类植物的物种多样性和区系组成   总被引:1,自引:0,他引:1  
在一定实地调查和分类的基础上,采用统计分析及区系地理分析法,对云南地区蕨类植物进行研究。结果表明:云南地区共有蕨类植物60科193属1 530种(包括变种和变型),科、属、种分别占中国蕨类植物科总数的58.8%,属的83.9%和种的95.2%;在这60个科中含30种以上的有13个,含5个属以上的有11个,分别占该蕨类植物区系属、种数的56.5%和79.2%,特别是鳞毛蕨科、蹄盖蕨科、水龙骨科和金星蕨科,这4个科共拥有70属761种,分别占总属数、总种数的36.3%、49.7%;193属中含30种以上的有11个,分别占总属、总种数的5.7%和41.7%,最具优势的是鳞毛蕨属和耳蕨属、蹄盖蕨属、铁角蕨属、卷柏属,这5个属共有403种,占总种数的26.3%;该区系中无云南特有科,但具有4个亚洲特有科:雨蕨科、稀子蕨科、柄盖蕨科和骨碎补科;该区系以热带、亚热带性质为主,科的区系成分中热带亚热带分布的科占66.6%,热带成分的属有112个,占68.7%(除世界分布类型);该区系是东亚地区蕨类植物区系的重要组成部分,东亚分布31属和中国特有分布6属,分别占总属数(除世界分布属外)的19.0%和3.7%;该地区蕨类植物区系与西藏、台湾具有共同的区系起源和物种分化形成的背景,属的相似性系数约为70%,种的相似性系数约为30%,均起源于热带亚热带地区;属的热带区系成分与温带区系成分所占比例分别为68.7%和27.6%,存在一定的区系过渡性;该区系科的分化强度为3.2,属的分化强度为7.9,在科、属水平上均表现出较强的区系分化特征。  相似文献   

18.
Aim A comparison of biodiversity patterns within Malesia in relation to surface area. Location Analysis of the patterns in species richness and endemism of vascular plants in the five major Malesian islands, i.e. Java, Sulawesi, Sumatra, Borneo and New Guinea. Methods Available data on species richness and species ranges in correlation with the surface area of the respective islands were examined in this work. Estimations of total species numbers for these islands are presented based on extrapolation of all available published Flora Malesiana information and recent checklists, all in all comprising 12,000 different species. The regression analysis of overall species richness and endemism were studied for all species together as well as for different plant families to compare the fit with the Arrhenius species–area model. Results The five islands form a series of independent areas of increasing size suited for an analysis of the species–area relationships at the regional scale. All species taken together and those of families with even distribution throughout Malesia show significant species–area relationships. Non‐significant relationships were detected in families with western or eastern‐centred Malesian distribution patterns. Relationships between number of endemic species and surface area are significant for all species and for the majority of the families with significant species–area relationships. Main conclusions Species–area relationships of families appear to be dependent on species number. Families with high numbers of species usually have a significant species–area relationship whereas small families have not. For the families that display an eastern or western Malesian centred pattern, a historical biogeographical explanation should be invoked. Island surface area appears to be a predictor for island percent endemism in Malesian vascular plants. None of the islands appears to be a hotspot of endemism nor of species diversity, as no significant departure from the Arrhenius model was noted for any of them.  相似文献   

19.
Using an exhaustive data compilation, Iberian vascular plant species richness in 50 times 50 UTM grid cells was regressed against 24 explanatory variables (spatial, geographical, topographical, geological, climatic, land use and environmental diversity variables) using Generalized Linear Models and partial regression analysis in order to ascertain the relative contribution of primary, heterogeneous and spatially structured variables. The species richness variation accounted for by these variables is reasonably high (65% of total deviance). Little less than half of this variation is accounted for spatially structured variables. A purely spatial component of variation is hardly significant. The most significant variables are those related to altitude, and particularly maximum altitude, whose cubic response reflects the occurrence of the maximum number of species at the highest altitudes. This result highlighted the importance of Iberian mountains as hotspots of diversity and the relevance of large and small scale historical factors in contemporary plant distribution patterns. Climatic or energy-related variables contributed little, whereas geological (calcareous and acid rocks) and, to a lesser extent, environmental heterogeneity variables (land use diversity and altitude range) seem to be more important.  相似文献   

20.
The East Usambara Mountain forests constitute what is probably one of the richest biological communities in Africa in terms of plant and animal species numbers and endemic taxa. This review presents brief accounts of the flora and of three invertebrate and four vertebrate groups and shows the percentage endemic taxa to vary from 2% (mammals) to 95% (millipedes) as a proportion of the true forest species.
Notes are given on the geology, soils, climate and present land use of the Usambaras. Biological richness is considered to be due to long periods of isolation and geological stability coupled with periods of species immigration during times of re-establishment of a continuous forest cover. The nature of the endemic elements is briefly discussed.
Evidence is given to show that the forests are subject to increasing pressure from legal and illegal encroachment due to agriculture (tea, cardamon, subsistence) and forestry timber operations. Air photograph analysis shows a forest decrease of some 50% in the vicinity of Amani from 1954 to 1976.
The low conservation status of most forest reserves and the lack of detailed knowledge on the distribution, status and biology of the endemic species means present conservation efforts are poor and haphazard. This review calls for greatly increased research inputs and a complete halt to all exploitation of natural forest areas until a long term conservation land use plan can be implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号