首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial communities play a central role in ecosystems, by regulating biogeochemical fluxes. Therefore, understanding how multiple functional interactions between species face environmental perturbations is a major concern in conservation biology. Because bacteria can use several strategies, including horizontal gene transfers (HGT), to cope with rapidly changing environmental conditions, potential decoupling between function and taxonomy makes the use of a given species as a general bioindicator problematic. The present work is a first step to characterize the impact of a recent polymetallic gradient over the taxonomical networks of five lacustrine bacterial communities. Given that evolutionary convergence represents one of the best illustration of natural selection, we focused on a system composed of two pairs of impacted and clean lakes in order to test whether similar perturbation exerts a comparable impact on the taxonomical networks of independent bacterial communities. First, we showed that similar environmental stress drove parallel structural changes at the taxonomic level on two independent bacterial communities. Second, we showed that a long-term exposure to contaminant gradients drove significant taxonomic structure changes within three interconnected bacterial communities. Thus, this model lake system is relevant to characterize the strategies, namely acclimation and/or adaptation, of bacterial communities facing environmental perturbations, such as metal contamination.  相似文献   

2.
The increasing use of genetic information for the development of methods to study the diversity, distributions, and activities of protists in nature has spawned a new generation of powerful tools. For ecologists, one lure of these approaches lies in the potential for DNA sequences to provide the only immediately obvious means of normalizing the diverse criteria that presently exist for identifying and counting protists. A single, molecular taxonomy would allow studies of diversity across a broad range of species, as well as the detection and quantification of particular species of interest within complex, natural assemblages; goals that are not feasible using traditional methods. However, these advantages are not without their potential pitfalls and problems. Conflicts involving the species concept, disagreements over the true (physiological/ecological) meaning of genetic diversity, and a perceived threat by some that sequence information will displace knowledge regarding the morphologies, functions and physiologies of protistan taxa, have created debate and doubt regarding the efficacy and appropriateness of some genetic approaches. These concerns need continued discussion and eventual resolution as we move toward the irresistible attraction, and potentially enormous benefits, of the application of genetic approaches to protistan ecology.  相似文献   

3.
Ecology has had a lower profile in Biology & Philosophy than one might expect on the basis of the attention ecology is given in public discussions in relation to environmental issues. Our tentative explanation is that ecology appears theoretically redundant within biology and, consequently, philosophically challenging problemsrelated to biology are commonly supposed to be somewhere else, particularly in the molecular sphere. Richard Levins has recognized the genuine challenges posed by ecology for theoretical and philosophical thinking in biology. This essay sets the stage for appreciating his work; it was preceded by four articles published in Biology & Philosophy 15(2),and is followed by a personal reminiscent.  相似文献   

4.
A microbial community model is proposed that accounts for byproducts of one strain being nutrients for another and for cells passing in and out of states of torpor. It is shown that such models can sustain the propagation of a nutrient pulse as observed, for example, in methanogenesis.This work was supported in part by NSF Grant DMS9206677 and in part by NSF STC Center in Microbial Ecology, Michigan State University.  相似文献   

5.
Ecosystem engineers are increasingly being reintroduced to restore ecological processes in restoration and rewilding projects. To predict and adaptively manage the impact of such species their behavioral ecology must be understood and quantified. Rooting behavior by wild boar qualifies them as ecosystem engineers due to their impact on vegetation disturbance regimes. The behavioral foraging ecology of wild boar was quantified in a fenced area in the Scottish Highlands in order to provide some of the understanding necessary to predict their ability to affect ecosystem restoration. Five wild boar were monitored within a 125 ha fenced area using Global Positioning System (GPS) collars and behavioral monitoring over a 12‐month period. Their activity budget, the relationship between foraging behavior and vegetation communities, and how these relationships vary between seasons was investigated. The results indicate that wild boar invested approximately four more hours daily to rooting during the autumn and winter than the spring and summer. During the spring and summer, grazing was the dominant foraging behavior (approximately 28% of foraging period) while rooting dominated in autumn and winter (approximately 76% of foraging period). Deep rooting behavior is particularly associated with bracken‐dominated communities. Associations between rooting, vegetation community, and season will have a strong influence on the spatial and temporal distribution of rooting behavior. This variation could have important implications for the impacts of boar on vegetation community dynamics. These results detail some of wild boar's ecosystem engineering behaviors; however, further research is required to consider the wider impacts of a full reintroduction.  相似文献   

6.
Although widespread declines in anuran populations have attracted considerable concern, the stochastic demographics of these animals make it difficult to detect consistent trends against a background of spatial and temporal variation. To identify long‐term trends, we need datasets gathered over long time periods, especially from tropical areas where anuran biodiversity is highest. We conducted road surveys of four anurans in the Australian wet–dry tropics on 4637 nights over a 16‐year period. Our surveys spanned the arrival of invasive cane toads (Rhinella marina), allowing us to assess the invader's impact on native anuran populations. Our counts demonstrate abrupt and asynchronous shifts in abundance and species composition from one year to the next, not clearly linked to rainfall patterns. Typically, periods of decline in numbers of a species were limited to 1–2 years and were followed by 1‐ to 2‐year periods of increase. No taxa showed consistent declines over time, although trajectories for some species showed significant perturbations coincident with the arrival of toads. None of the four focal frog species was less common at the end of the study than at the beginning, and three of the species reached peak abundances after toad arrival. Survey counts of cane toads increased rapidly during the initial stage of invasion but have subsequently declined and fluctuated. Distinguishing consistent declines versus stochastic fluctuations in anuran populations requires extensive time‐series analysis, coupled with an understanding of the shifts expected under local climatic conditions. This is especially pertinent when assessing impacts of specific perturbations such as invasive species.  相似文献   

7.
Ward  Tockner 《Freshwater Biology》2001,46(6):807-819
1. A broadened concept of biodiversity, encompassing spatio‐temporal heterogeneity, functional processes and species diversity, could provide a unifying theme for river ecology. 2. The theoretical foundations of stream ecology often do not reflect fully the crucial roles of spatial complexity and fluvial dynamics in natural river ecosystems, which has hindered conceptual advances and the effectiveness of efforts at conservation and restoration. 3. Inclusion of surface waters (lotic and lentic), subsurface waters (hyporheic and phreatic), riparian systems (in both constrained and floodplain reaches), and the ecotones between them (e.g. springs) as interacting components contributing to total biodiversity, is crucial for developing a holistic framework of rivers as ecosystems. 4. Measures of species diversity, including alpha, beta and gamma diversity, are a result of disturbance history, resource partitioning, habitat fragmentation and successional phenomena across the riverine landscape. A hierarchical approach to diversity in natural and altered river‐floodplain ecosystems will enhance understanding of ecological phenomena operating at different scales along multidimensional environmental gradients. 5. Re‐establishing functional diversity (e.g. hydrologic and successional processes) across the active corridor could serve as the focus of river conservation initiatives. Once functional processes have been reconstituted, habitat heterogeneity will increase, followed by corresponding increases in species diversity of aquatic and riparian biota.  相似文献   

8.
1. Variation in spring phenology – like tree budburst – affects the structure of insect communities, but impacts of autumn phenology have been neglected. Many plant species have recently delayed their autumn phenology, and the timing of leaf senescence may be important for herbivorous insects. 2. This study explored how an insect herbivore community associated with Quercus robur is influenced by variation in autumn phenology. For this, schools were asked to record, across the range of oak in Sweden, the autumn phenology of oaks and to conduct a survey of the insect community. 3. To tease apart the relative impacts of climate from that of tree phenology, regional tree phenology was first modelled as a function of regional climate, and the tree‐specific deviation from this relationship was then used as the metric of relative tree‐specific phenology. 4. At the regional scale, a warmer climate postponed oak leaf senescence. This was also reflected in the insect herbivore community: six out of 15 taxa occurred at a higher incidence and five out of 18 taxa were more abundant, in locations with a warmer climate. Similarly, taxonomic richness and herbivory were higher in warmer locations. 5. Trees with a relatively late autumn phenology had higher abundances of leaf miners (Phyllonorycter spp.). This caused lower community diversity and evenness on trees with later autumn phenology. 6. The findings of the present study illustrate that both regional climate‐driven patterns and local variation in oak autumn phenology contribute to shaping the insect herbivore community. Community patterns may thus shift with a changing climate.  相似文献   

9.
Common carp (Cyprinus carpio, [Linnaeus, 1758]) have long been established in the United States and in some cases their populations can be very dense, leading biologists to expend significant effort towards reducing numbers of common carp in some populations. Estimating abundance of common carp prior to removal efforts would be useful in evaluating success of these removal efforts, but marking large numbers of fish can be expensive. Therefore, a low-cost tagging option is needed. In this study, we used tank and field experiments to determine the retention and longevity of hole-punch marks in the opercula of common carp. For the tank experiment, fish were double marked with a size-3 self-piercing tag and an operculum hole-punch mark (using a paper hole-punch tool with a hole diameter of 6.4 mm) on opposite sides of the fish. Over the entirety of the 180–day tank experiment, retention of the self-piercing tags and hole-punch marks was 100% and no marking mortality was observed. For the field experiment, 883 common carp were tagged at random in two groups, a double-marked group (n = 416, both self-piercing tags and hole-punch) and a single-mark group (n = 467, self-piercing tag). Fish were sampled monthly for 398 days. Because the length distribution sampled was bimodal, we evaluated tag retention of fish <330 mm TL (small fish, n = 273) and > 331 mm TL (large fish, n = 143), separately. Hole-punch mark retention was high for both size classes throughout most of the field experiment. For large fish, retention of hole-punch marks was 100% for the entire 398-day experiment. For small fish, retention of hole-punch marks was 100% through 184-day and remained above 93% through 328-days, but declined to 0% by day 398. Our results suggest that the operculum hole-punch mark is a valuable low-cost, long-term technique for tagging common carp.  相似文献   

10.
It is now widely accepted that the climate of our planet is changing, but it is still hard to predict the consequences of these changes on ecosystems. The impact is worst at the poles, with scientists concerned that impacts at lower latitudes will follow suit. Canada has a great responsibility and potential for studying the effects of climate changes on the ecological dynamics, given its geographical location and its scientific leadership in this field. The 5th annual meeting of the Canadian Society for Ecology and Evolution was held in the International Year of Biodiversity, to share recent advances in a wide variety of disciplines ranging from molecular biology to behavioural ecology, and to integrate them into a general view that will help us preserve biodiversity and limit the impact of climate change on ecosystems.  相似文献   

11.
Echolocating bats and eared moths are a model system of predator–prey interaction within an almost exclusively auditory world. Through selective pressures from aerial-hawking bats, noctuoid moths have evolved simple ears that contain one to two auditory neurons and function to detect bat echolocation calls and initiate defensive flight behaviours. Among these moths, some chemically defended and mimetic tiger moths also produce ultrasonic clicks in response to bat echolocation calls; these defensive signals are effective warning signals and may interfere with bats'' ability to process echoic information. Here, we demonstrate that the activity of a single auditory neuron (the A1 cell) provides sufficient information for the toxic dogbane tiger moth, Cycnia tenera, to decide when to initiate defensive sound production in the face of bats. Thus, despite previous suggestions to the contrary, these moths'' only other auditory neuron, the less sensitive A2 cell, is not necessary for initiating sound production. However, we found a positive linear relationship between combined A1 and A2 activity and the number of clicks the dogbane tiger moth produces.  相似文献   

12.
Major shifts in many ecosystem-level properties of tropical forests have been observed, but the processes driving these changes are poorly understood. The forest on Barro Colorado Island (BCI) exhibited a 20% decrease in the number of trees and a 10% increase in average diameter. Using a metabolism-based zero-sum framework, we show that increases in per capita resource use at BCI, caused by increased tree size and increased temperature, compensated for the observed declines in abundance. This trade-off between abundance and average resource use resulted in no net change in the rate resources are fluxed by the forest. Observed changes in the forest are not consistent with other hypotheses, including changes in overall resource availability and existing self-thinning models. The framework successfully predicts interrelated changes in size, abundance and temperature, indicating its utility for understanding changes in the structure and dynamics of ecosystems.  相似文献   

13.
Experimental ecology at deep-sea hydrothermal vents: a perspective   总被引:1,自引:0,他引:1  
In situ and laboratory experiments conducted over the past quarter of a century have greatly increased our understanding of the ecology of deep-sea hydrothermal systems. Early experiments suggested that chemosynthetic primary production constituted the principal source of organic matter for biological communities associated with vents, although subsequent studies have revealed many complexities associated with interactions between microbes and higher organisms inhabiting these ecosystems. A diversity of host-microbial symbiont relationships has been identified and experimental studies have revealed the exquisite physiological adaptations within the giant tubeworm, Riftia pachyptila, for the uptake, fixation, and assimilation of carbon. In vitro experiments demonstrated the unusual sulfide binding properties of tubeworm hemoglobin that prevent inhibition of the cytochrome-c oxidase enzyme system during transport of sulfide to symbiont-bearing tissues. Studies of respiration and growth of several species of vent organisms conducted over the past two decades transformed earlier views that low metabolism and slow growth are characteristics of all organisms inhabiting all deep-sea environments. Results of recent experiments suggest that metabolic rates correlate with the degree of mobility of the organisms rather than with any specific attribute of the deep-sea environment itself, and growth rates of certain vent organisms (e.g., R. pachyptila) were found to be among the highest in any marine environments. While extreme thermal tolerance has been suggested as characteristic of certain vent fauna (e.g., alvinellid polychaetes and alvinocarid shrimp), the majority of vent metazoans live at temperatures below 20 °C and additional experiments are necessary to reconcile field experiments documenting thermal tolerance in situ, thermal tolerance in vivo, and thermal sensitivity of biochemical constituents of vent organisms. Transplantation and clearance experiments, as well as in situ characterization of vent fluid chemistry, have greatly increased our understanding of organism–environment interactions. Early analyses of metazoan egg size and larval morphology, coupled with in vivo larval culture experiments, available physical oceanographic data, and genetic studies of gene flow, have contributed greatly to our understanding of mechanisms of dispersal between widely separated vent sites. The documentation of invertebrate colonization and succession of new vents following a volcanic eruption, and a series of manipulative field experiments, provide considerable insights into the relative roles of abiotic conditions and biotic interactions in structuring vent communities. Recent and emerging technological developments, such as in situ chemical analyzers, observatory approaches, and laboratory-based pressure culture systems, should provide invaluable new experimental tools for tackling many remaining questions concerning the ecology of deep-sea hydrothermal systems.  相似文献   

14.
R. Laugaste  M. Pork 《Hydrobiologia》1996,338(1-3):63-76
463 taxa of diatoms have been recorded from the pelagic and littoral plankton, benthos and periphyton of Lake Peipsi-Pihkva. This typical eutrophic plain lake has many common features with large lakes of both Central and North Europe. As to the richness of diatom taxa, L. Peipsi- Pihkva surpasses other eutrophic lowland lakes, which can be explained by the size of this lake, and by the variety of living conditions in it. The list of taxa as well as notes about rare and phytogeographically interesting diatoms are presented.Deceased.  相似文献   

15.
Scraping a living: a review of littorinid grazing   总被引:4,自引:4,他引:0  
Littorinid snails are predominantly herbivorous and the versatility of their radulae enables them to feed on a variety of macroscopic and microscopic plants in a diversity of habitats. Some are selective feeders preferring some species of algae to others, and rejecting some even after a prolonged period of starvation. Different species of snail exhibit different preferences. The factors affecting the attractiveness and edibility of food plants are discussed and food value considered.Foraging behaviour of littorinids is briefly reviewed in relation to the influence of chemical cues from the algae. Littorinids appear to be able to select or reject algae without having ingested them, having perceived the plants from a distance, moving towards favoured foods (or habitat-providing plants) and away from those that it rejects. The nature of the chemical cues emitted by the algae is discussed. Temporal patterns of foraging activity show some evidence of an endogenous component which can be overridden by responses to environmental conditions. These patterns place restraints on energy intake.The structural and chemical defences used by algae against littorinid grazing are considered. The importance of polyphenolic compounds is evaluated. The effects of grazing as a selective agency and a factor influencing algal populations are discussed. There is some evidence that life history patterns are a response to grazing. The influence of external physical factors, such as salinity on grazing pressure is demonstrated.Finally, the impact of littorinid snails on intertidal communities is assessed in relation to their abundance and biogeographical distribution. The relative importance of littorinids is contrasted on shores possessing or lacking limpets.  相似文献   

16.
Community ecology entered the 1970s with the belief that niche theory would supply a general theory of community structure. The lack of wide-spread empirical support for niche theory led to a focus on models specific to classes of communities such as lakes, intertidal communities, and forests. Today, the needs of conservation biology for metrics of “ecological health” that can be applied across types of communities prompts a renewed interest in the possibility of general theory for community ecology. Disputes about the existence of general patterns in community structure trace at least to the 1920s and continue today almost unchanged in concept, although now expressed through mathematical modeling. Yet, a new framework emerged in the 1980s from findings that community composition and structure depend as much on the processes that bring species to the boundaries of a community as by processes internal to a community, such as species interactions and co-evolution. This perspective, termed “supply-side ecology”, argued that community ecology was to be viewed as an “organic earth science” more than as a biological science. The absence of a general theory of the earth would then imply a corresponding absence of any general theory for the communities on the earth, and imply that the logical structure of theoretical community ecology would consist of an atlas of models special to place and geologic time. Nonetheless, a general theory of community ecology is possible similar in form to the general theory for evolution if the processes that bring species to the boundary of a community are analogized to mutation, and the processes that act on the species that arrive at a community are analogized to selection. All communities then share some version of this common narrative, permitting general theorems to be developed pertaining to all ecological communities. Still, the desirability of a general theory of community ecology is debatable because the existence of a general theory suppresses diversity of thought even as it allows generalizations to be derived. The pros and cons of a general theory need further discussion.  相似文献   

17.
18.
Landscape ecology as a bridge from ecosystems to human ecology   总被引:2,自引:0,他引:2  
Landscape as a subject of (terrestrial) ecology can be interpreted: first, as a piece of land composed of different ecosystems; and second, as a holistic entity of aesthetic perception derived from landscape paintings and parks of the 18th and 19th century. Such entities display a characteristic arrangement of landscape elements regarded as a whole and taking them apart for specific investigation will break up and virtually destroy it (e.g. a symphony dissociated into single notes). Landscape as a holistic entity satisfies emotional human needs like identification with regions, and explains the attraction of tourists. Entity features are land-use and land cover combined with openness and a certain naturalness. A key question is whether you call a piece of the earths surface just land or landscape– and why. Such questions touch the interface between landscape ecology and human ecology. But human ecology must not dismiss landscape functions. The most beautiful landscape will be reduced to a mere picture if it does not also provide basic life-support. Therefore, energy and matter flows and transformations between the ecosystems of a landscape have to be determined along with its climate, geomorphology (relief), soils, hydrology, species and ecosystem diversity. These different approaches, however, may never be combined into a unified whole. There is no superscience, and incidentally, its complexity would by far exceed human brain capacity. What we can achieve is bridge-building by approximation of selected facts. A conscious spatial arrangement of diversified land-use units (ecotopes) will promote (bio)diversity and may be perceived as an integral landscape pattern. A spatially and temporally differentiated energy input into land-use units will result in a gradient of utilization intensity and allow more species to thrive, again enhancing both diversity and landscape beauty. Modern humans have deliberately chosen artificial surroundings to achieve complete environmental control, even in rural lifestyles. But as far as emotional needs are concerned, this artificiality seems to be neither human nor ecological. Something natural is lacking, and landscape in its holistic sense can provide it – be it a landscaped open space in a city, a rural scene, a seashore or a mountain range. Maintaining and managing such naturalness requires sound ecological knowledge – not as an aim in itself, but to provide a bridge for humans.  相似文献   

19.
Bowman et al. (Journal of Biogeography, 2011, 38 , 2223–2236) attempt a synthesis of the current status of study into human use of fire as an ecosystem management tool and provide a framework for guiding research on the human dimensions of global fire. While we applaud this ambitious effort, we believe the proposed ‘pyric phase and transition’ model to be too deterministic and simplistic to account for the complexity and diversity in human–fire relationships. After reviewing theoretical problems with the proposed framework, we question policy implications of their conclusions concerning tropical forest systems. We suggest that a theoretically informed perspective should build on an historical fire ecology framework for investigating social and ecological aspects of human–environment interactions.  相似文献   

20.
Moss communities are commonly found in temperate forests and form a nearly continuous understory in some high latitude forests. However, little is known about the microbial component of these communities, especially the non-testate amoeboid protists. Fifty morphospecies of naked amoebae were identified in samples collected at eight sites in a northeastern North American forest. The mean number (+/-SE) of morphospecies found per sample site based on laboratory cultures was 17+/-2.1. The density of amoebae expressed as number/g dry weight of moss ranged from 3.5+/-0.04 x 10(3) to 4.3+/-0.2 x 10(4) and was positively correlated with the moss moisture content (r=0.9, P<0.001, df=26). Densities of gymnamoebae in the moss are generally higher than found in the surrounding soil, but this may be due in part to the greater weight of soil per unit volume compared with moss. The percentage of encysted forms was inversely related to the moisture content of the moss sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号