首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Measuring pollinator performance has become increasingly important with emerging needs for risk assessment in conservation and sustainable agriculture that require multi‐year and multi‐site comparisons across studies. However, comparing pollinator performance across studies is difficult because of the diversity of concepts and disparate methods in use. Our review of the literature shows many unresolved ambiguities. Two different assessment concepts predominate: the first estimates stigmatic pollen deposition and the underlying pollinator behaviour parameters, while the second estimates the pollinator's contribution to plant reproductive success, for example in terms of seed set. Both concepts include a number of parameters combined in diverse ways and named under a diversity of synonyms and homonyms. However, these concepts are overlapping because pollen deposition success is the most frequently used proxy for assessing the pollinator's contribution to plant reproductive success. We analyse the diverse concepts and methods in the context of a new proposed conceptual framework with a modular approach based on pollen deposition, visit frequency, and contribution to seed set relative to the plant's maximum female reproductive potential. A system of equations is proposed to optimize the balance between idealised theoretical concepts and practical operational methods. Our framework permits comparisons over a range of floral phenotypes, and spatial and temporal scales, because scaling up is based on the same fundamental unit of analysis, the single visit.  相似文献   

4.
The loss of bird species following human colonization of New Zealand has raised concerns about the consequences for crucial ecosystem functions such as pollination. The understorey shrub Alseuosmia macrophylla (Alseuosmiaceae) exhibits characteristics typical of a bird pollination syndrome, but populations still persist in northern North Island forest remnants despite the local extinction of most endemic bird pollinators, leading to the suggestion that moths – rather than birds – may be the primary pollinators. The aim of this study was to quantify the importance of endemic birds as pollinators of A. macrophylla over several years by comparing plants on Little Barrier Island (LBI), where all extant endemic bird pollinators still occur, to plants at sites on the adjacent North Island in the Waitakere Ranges (WTK), where only one of these species remains common. Flowers on LBI were visited by endemic bellbirds (Anthornis melanura) and stitchbirds (Notiomystis cincta), while at WTK sites the most common visitors were the recently arrived silvereye (Zosterops lateralis) and the introduced honeybee (Apis mellifera), both of which acted principally as nectar robbers. Caged flowers on LBI had significantly lower fruit set than open flowers, and plants at WTK were significantly more pollen‐limited than plants on LBI. This provides evidence that the loss of endemic pollinating birds is the most likely reason for the high pollen limitation found in some North Island A. macrophylla populations, and the very low seed set of these populations could have serious implications for the long‐term persistence of this species.  相似文献   

5.
6.
Pollen plays a key role in plant reproductive biology. Despite the long history of research on pollen and pollination, recent advances in pollen-tracking methods and statistical approaches to linking plant phenotype, pollination performance, and reproductive fitness yield a steady flow of exciting new insights. In this introduction to the Special Issue “Pollen as the Link Between Phenotype and Fitness,” we start by describing a general conceptual model linking functional classes of floral phenotypic traits to pollination-related performance metrics and reproductive fitness. We use this model as a framework for synthesizing the relevant literature, highlighting the studies included in the Special Issue, and identifying gaps in our understanding and opportunities for further development of the field. The papers that follow in this Special Issue provide new insights into the relationships between pollen production, presentation, flower morphology, and pollination performance (e.g., pollen deposition onto stigmas), the role of pollinators in pollen transfer, and the consequences of heterospecific pollen deposition. Several of the studies demonstrate exciting experimental and analytical approaches that should pave the way for continued work addressing the intriguing role of pollen in linking plant phenotypes to reproductive fitness.  相似文献   

7.
8.

Premise

Pollen-rewarding plants face two conflicting constraints: They must prevent consumptive emasculation while remaining attractive to pollen-collecting visitors. Small pollen packages (the quantity of pollen available in a single visit) may discourage visitors from grooming (reducing consumptive loss) but may also decrease a plant's attractiveness to pollen-collecting visitors. What package size best balances these two constraints?

Methods

We modeled the joint effects of pollinators' grooming behaviors and package size preferences on the optimal package size (i.e., the size that maximizes pollen donation). We then used this model to examine Darwin's conjecture that selection should favor increased pollen production in pollen-rewarding plants.

Results

When package size preferences are weak, minimizing package size reduces grooming losses and should be favored (as in previous theoretical studies). Stronger preferences select for larger packages despite the associated increase to grooming loss because loss associated with nonremoval of smaller packages is even greater. Total pollen donation increases with production (as Darwin suggested). However, if floral visitation declines or packages size preference increases with overall pollen availability, the fraction of pollen donated may decline as per-plant pollen production increases. Hence, increasing production may result in diminishing returns.

Conclusions

Pollen-rewarding plants can balance conflicting constraints on pollen donation by producing intermediate-sized pollen packages. Strictly pollen-rewarding plants may have responded to past selection to produce more pollen in total, but diminishing returns may limit the strength of that selection.
  相似文献   

9.
Nocturnal moths are important pollinators of plants. The clover cutworm, Hadula trifolii, is a long‐distance migratory nocturnal moth. Although the larvae of H. trifolii are polyphagous pests of many cultivated crops in Asia and Europe, the plant species pollinated by the adult are unclear. Pollen species that were attached to individual migrating moths of H. trifolii were identified based on pollen morphology and DNA to determine their host plants, geographic origin, and pollination areas. The moths were collected on their seasonal migration pathway at a small island, namely Beihuang, in the center of the Bohai Sea of China during 2014 to 2018. Pollen was detected on 28.60% of the female moths and 29.02% of the male, mainly on the proboscis, rarely on compound eyes and antennae. At least 92 species of pollen from 42 plant families, mainly from Asteraceae, Amaranthaceae, and Pinaceae, distributed throughout China were found on the test moths. Migratory H. trifolii moths visited herbaceous plants more than woody plants. Pollen of Macadamina integrifolia or M. tetraphylla was found on moths early in the migratory season. These two species are distributed in Guangdong, Yunnan, and Taiwan provinces in China, indicating that migratory moths probably traveled about 2000 km from southern China to the Beihuang Island in northern China. Here, by identifying plant species using pollen, we gained a better understanding of the interactions between H. trifolii moths and a wide range of host plants in China. This work provides valuable and unique information on the geographical origin and pollination regions for H. trifolii moths.  相似文献   

10.
Geographical variation in pollinators visiting a plant can produce plant populations adapted to local pollinator environments. We documented two markedly different pollinator climates for the spring ephemeral wildflower Claytonia virginica: in more northern populations, the pollen‐specialist bee Andrena erigeniae dominated, but in more southern populations, A. erigeniae visited rarely and the bee‐fly Bombylius major dominated. Plants in the northern populations experienced faster pollen depletion than plants in southern populations. We also measured divergent pollen‐related plant traits; plants in northern populations produced relatively more pollen per flower and anther dehiscence was more staggered than plants in southern populations. These plant traits might function to increase pollen dispersal via the different pollen vectors.  相似文献   

11.
  • Most angiosperms rely on animal pollination for reproduction, but the dependence on specific pollinator groups varies greatly between species and localities. Notably, such dependence may be influenced by both floral traits and environmental conditions. Despite its importance, their joint contribution has rarely been studied at the assemblage level.
  • At two elevations on the Caribbean island of Dominica, we measured the floral traits and the relative contributions of insects versus hummingbirds as pollinators of plants in the Rubiaceae family. Pollinator importance was measured as visitation rate (VR) and single visit pollen deposition (SVD), which were combined to assess overall pollinator effectiveness (PE).
  • In the wet and cool Dominican highland, we found that hummingbirds were relatively more frequent and effective pollinators than insects, whereas insects and hummingbirds were equally frequent and effective pollinators at the warmer and less rainy midelevation. Furthermore, floral traits correlated independently of environment with the relative importance of pollinators, hummingbirds being more important in plant species having flowers with long and wide corollas producing higher volumes of dilute nectar.
  • Our findings show that both environmental conditions and floral traits influence whether insects or hummingbirds are the most important pollinators of plants in the Rubiaceae family, highlighting the complexity of plant–pollinator systems.
  相似文献   

12.
Reward partitioning and replenishment and specific mechanisms for pollen presentation are all geared towards the maximization of the number of effective pollinator visits to individual flowers. An extreme case of an apparently highly specialized plant–pollinator interaction with thigmonastic pollen presentation has been described for the morphologically complex tilt‐revolver flowers of Caiophora arechavaletae (Loasaceae) pollinated by oligolectic Bicolletes pampeana (Colletidae, Hymenoptera). We studied the floral biology of Nasa macrothyrsa (Loasaceae) in the field and in the glasshouse, which has very similar floral morphology, but is pollinated by polylectic Neoxylocopa bees (Apidae, Hymenoptera). We investigated the presence of thigmonastic anther presentation, visitor behaviour (pollinators and nectar robbers), co‐ordination of pollinator visits with flower behaviour and the presence of nectar replenishment. The aim of this study was to understand whether complex flower morphology and behaviour can be explained by a specialized pollination syndrome, or whether alternative explanations can be offered. The results showed that Nasa macrothyrsa has thigmonastic pollen presentation, i.e. new pollen is rapidly (<< 10 min) presented after a pollinator visit. Nectar secretion is independent of removal and averages 7–14 µL h–1. The complex flowers, however, fail to exclude either native (hummingbirds) or introduced (honeybees) nectar robbers, nor does polylectic Neoxylocopa actively collect the pollen presented. The findings do not support a causal link between complex flower morphology and functionality in Loasaceae and a highly specialized pollination. Rapid pollen presentation is best explained by the pollen presentation theory: the large proportion of pollinators coming shortly after a previous visit find little nectar and are more likely to move on to a different plant. The rapid presentation of pollen ensures that all these valuable ‘hungry pollinators’ are dusted with small pollen loads, thus increasing the male fitness of the plant by increasing the likelihood of siring outcrossed offspring. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 124–131.  相似文献   

13.
Flower color polymorphism is relatively uncommon in natural flowering plants, suggesting that maintenance of different color morphs within populations is difficult. To address the selective mechanisms shaping pollen‐color dimorphism, pollinator preferences and reproductive performance were studied over three years in Epimedium pubescens in which some populations had plants with either green or yellow pollen (and anthers). Visitation rate and pollen removal and receipt by the bee pollinator (Andrena emeishanica) did not differ between the two color morphs. Compared to the green morph, siring success of the yellow morph's pollen was lower, but that of mixtures of pollen from green and yellow morphs was lowest. This difference, corresponding to in vivo and ex vivo experiments on pollen performance, indicated that pollen germination, rather than tube growth, of the green morph was higher than that of the yellow morph and was seriously constrained in both morphs if a pollen competitor was present. A rare green morph may invade a yellow‐morph population, but the coexistence of pollen color variants is complicated by the reduced siring success of mixed pollinations. Potential pollen competition between morphs may have discouraged the maintenance of multiple phenotypes within populations, a cryptic mechanism of competitive exclusion.  相似文献   

14.
开花式样对传粉者行为及花粉散布的影响   总被引:8,自引:0,他引:8  
唐璐璐  韩冰 《生物多样性》2007,15(6):680-686
理解植物花的特征可以从单花特征和群体特征两个层次入手。开花式样是植物的花在群体上的特征体现, 通过在开花数目、开花类型以及花的排列上的变化, 不同的开花式样对传粉者具有不同的吸引力, 影响昆虫在植株上的活动, 使花粉运动的方向发生相应变化, 从而影响着植物最终的交配结果。此外开花式样随环境改变也会发生一些变化。本文介绍了开花式样研究的进展, 对开花数目、开花类型以及花的排列等3个方面的已有研究进行了分别阐述, 并提出开花式样研究应更多地考虑影响传粉的各种因素。  相似文献   

15.
We examined differences in pollen dispersal efficiency between 2 years in terms of both spatial dispersal range and genetic relatedness of pollen in a tropical emergent tree, Dipterocarpus tempehes. The species was pollinated by the giant honeybee (Apis dorsata) in a year of intensive community-level mass-flowering or general flowering (1996), but by several species of moths in a year of less-intensive general flowering (1998). We carried out paternity analysis based on six DNA microsatellite markers on a total of 277 mature trees forming four spatially distinct subpopulations in a 70 ha area, and 147 and 188 2-year-old seedlings originating from seeds produced in 1996 and 1998 (cohorts 96 and 98, respectively). Outcrossing rates (0.93 and 0.96 for cohorts 96 and 98, respectively) did not differ between years. Mean dispersal distances (222 and 192 m) were not significantly different between the 2 years but marginally more biased to long distance in 1996. The mean relatedness among cross-pollinated seedlings sharing the same mothers in cohort 96 was lower than that in cohort 98. This can be attributed to the two facts that the proportion of intersubpopulations pollen flow among cross-pollination events was marginally higher in cohort 96 (44%) than in cohort 98 (33%), and that mature trees within the same subpopulations are genetically more related to each other than those between different subpopulations. We conclude that D. tempehes maintained effective pollen dispersal in terms of outcrossing rate and pollen dispersal distance in spite of the large difference in foraging characteristics between two types of pollinators. In terms of pollen relatedness, however, a slight difference was suggested between years in the level of biparental inbreeding.  相似文献   

16.
Floral sex ratios, disease and seed set in dioecious Silene dioica   总被引:5,自引:0,他引:5  
1 In the dioecious, perennial herb Silene dioica , the density of pollen donors in a population is determined by overall plant density, the sex ratio and the proportion of plants infected with the anther-smut fungus Microbotryum violaceum , which results in permanent sterility of both male and female plants.
2 Pollinators ( Bombus spp.) were found to prefer male flowers and to avoid diseased flowers. This may result in an overall lower visitation frequency and increased risk for pollen limitation in populations with a low density of males or a high incidence of disease.
3 Compared with open-pollinated flowers, hand pollination resulted in a significant increase in the number of seeds produced per fruit in populations with an experimentally reduced proportion of males (25% and 50% male flowers) but not in a naturally male-dominated population (75% male flowers). Seed production per plant was increased by hand pollination only in the most female-dominated population. Because the floral sex ratio is often male-biased, resources rather than pollen availability are likely to set the upper limit for total seed production per individual in most healthy populations of S. dioica.
4 There was a negative relationship between seed set and incidence of disease across 22 populations in both years of a field study. However, there was no consistent difference between the responses of highly diseased populations (incidence 30–56%) and populations with a low disease incidence (incidence 0–8%) to hand pollination.
5 In a greenhouse experiment with cloned hand-pollinated females, the presence of spores on healthy flowers was found to reduce seed set significantly. In highly diseased populations, therefore, the frequent deposition of spores by flower visitors onto remaining healthy plants may decrease seed production below the potential level determined by resources or pollen availability.  相似文献   

17.
Effective interactions between plants and pollinators are essential for the reproduction of plant species. Pollinator exclusion experiments and pollen supplementation experiments quantify the degree to which plants depend on animal pollinators and the degree to which plant reproduction is pollen limited. Pollen supplementation experiments have been conducted across the globe, but are rare in high latitude regions. To fill this knowledge gap, we experimentally investigated the dependence on animal pollinators and magnitude of pollen limitation in eight plant species north of the Arctic Circle in Lapland, Finland. Our findings show that all plant species were pollinator dependent, but not pollen limited. We discuss several mechanisms that might buffer our focal plants from pollen limitation, including plant and pollinator generalization, and attractive plant traits. Our results demonstrate that many plant species north of the Arctic Circle are currently receiving adequate pollinator service and provide a baseline for future comparisons of pollinator dependence and pollen limitation in the Arctic across space and time.  相似文献   

18.
Summary During recent years, much work has focused on which factors limit the reproductive success in plants. Several studies show a strong influence of either resource limitation, pollen limitation or a combined effect of both. The theoretical arguments for resource limitation are abundant, but there has been very little work done concerning the effect of pollinator availability. In this paper we construct a model to study how the reproductive success in plants is influenced by the foraging behaviour of the pollinators. The pollinator population is assumed to have a constant population density. A functional response function for the pollinators is derived. It is similar to a Holling type II functional response. It is shown that, since the pollinators are regulated by factors not included in the model and their capability to pollinate is limited by the functional response, this is sufficient for regulating the plant population. There also exists a threshold condition for the persistence of the plant population that depended on the search rate of the pollinators and the demographic parameters of the plant population. If this threshold condition is not satisfied the plant population cannot persist and will become extinct. If the condition is satisfied the plant population grows until it is limited at the equilibrium mentioned above.  相似文献   

19.
Potential key functional floral traits are assessed in the species‐rich early divergent angiosperm family Annonaceae. Pollinators (generally beetles) are attracted by various cues (particularly visual, olfactory, and thermogenic), with pollinators rewarded by nectar (generally as stigmatic exudate), heat, and protection within the partially enclosed floral chamber. Petals sometimes function as pollinator brood sites, although this could be deceptive. Annonaceae species are self‐compatible, with outcrossing promoted by a combination of protogyny, herkogamy, floral synchrony, and dicliny. Pollination efficiency is enhanced by pollen aggregation, changes in anthesis duration, and pollinator trapping involving a close alignment between petal movements and the circadian rhythms of pollinators. Most Annonaceae flowers are apocarpous, with syncarpy restricted to very few lineages; fertilization is therefore optimized by intercarpellary growth of pollen tubes, either by stigmatic exudate (suprastylar extragynoecial compitum) or possibly the floral receptacle (infrastylar extragynoecial compitum). Although Annonaceae lack a distinct style, the stigmas in several lineages are elongated to form “pseudostyles” that are hypothesized to function as sites for pollen competition. Flowers can be regarded as immature fruits in which the ovules are yet to be fertilized, with floral traits that may have little selective advantage during anthesis theoretically promoting fruit and seed dispersal. The plesiomorphic apocarpous trait may have been perpetuated in Annonaceae flowers as it promotes the independent dispersal of fruit monocarps (derived from separate carpels), thereby maximizing the spatial/temporal distance between seedlings. This might compensate for the lack of genetic diversity among seeds within fruits arising from the limited diversity of pollen donors.  相似文献   

20.
Pollinator foraging patterns and the dynamics of pollen transport influence the quality and diversity of flowering plant mating opportunities. For species pollinated by grooming pollinators, such as bees, the amount of pollen carried between a donor flower and potential recipient flowers depends on how grooming influences pollen transfer. To investigate the relationship between grooming and pollen‐mediated gene dispersal, we studied bumblebee (Bombus fervidus) foraging behavior and resulting gene dispersal in linear arrays of Mimulus ringens. Each of the 14 plants in an array had a unique multilocus genotype, facilitating unambiguous assignment of paternity to 1050 progeny. Each plant was trimmed to a single flower so that pollinator movements could be linked directly to resulting gene dispersal patterns. Pollen‐mediated gene dispersal was very limited. More than 95% of the seeds sired by a donor flower were distributed over the first three recipient flowers in the visitation sequence. However, seeds were occasionally sired on flowers visited later in the pollinator's floral visitation sequence. Intensive grooming immediately following pollen removal from a donor flower significantly increased the decay rate of the donor flower's gene dispersal curve. These results suggest that the frequency and relative intensity of grooming can have significant effects on patterns of pollen‐mediated gene dispersal from individual pollen donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号