首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequential proteolytic processing of ErbB-4 occurs in response to ligand addition. Here, we assess the localization of cleavable and non-cleavable ErbB-4 isoforms to membrane microdomains using three methodologies: (1) Triton X-100-insolubility, (2) Brij98-insolubility, and (3) detergent-free density gradient centrifugation. Whereas ErbB-4 translocated to a Triton X-100-insoluble fraction upon treatment of T47D cells with heregulin, it constitutively associated with a Brij98-insoluble fraction and a lipid raft fraction isolated using detergent-free methodology. Comparison of cleavable and non-cleavable isoforms of ErbB-4 revealed that both ErbB-4 isoforms are constitutively localized to either a Triton X-100-soluble or Brij98-insoluble fraction. In contrast, addition of heregulin resulted in translocation of the cleavable isoform to a detergent-free lipid raft. Tumor necrosis factor-alpha converting enzyme (TACE), the ectodomain secretase for ErbB-4, was present predominantly in its mature active form in most microdomains analyzed. These data suggest the assembly of ErbB-4 ectodomain cleavage apparatus in a membrane microdomain.  相似文献   

2.
The synthesis of the glycosylphosphatidylinositol (GPI) anchor occurs in different compartments within the ER. We have previously shown that GPI anchor intermediates including GlcNAc-PI and GlcN-(acyl)PI are present in Triton insoluble membranes (TIMs), believed to be derived from lipid rafts. The present study was initiated to determine if GPI anchor intermediates move to raft-like domains after their synthesis or if these domains represent another ER compartment for GPI anchor synthesis. We determined that in transfected cells Pig-Ap and Pig-Lp, two proteins involved in the synthesis of GlcNAc-PI and GlcN-PI, respectively, are present in TIMs. In addition, we detected GlcNAc-PI synthase, GlcNAc-PI deacetylase, and GlcN-PI acyltransferase activities in TIMs isolated from untransfected cells. These results lend support to the possibility of additional GPI biosynthetic compartments in the ER and to the notion that GPI anchor intermediates produced in and outside raft-like domains may have a different fate.  相似文献   

3.
Recently it has been shown that cholesterol plays indispensable roles in the function of cholesterol-rich microdomains (rafts), such as in ligand-mediated signal transduction. Using a perfringolysin O derivative (BCtheta) that binds selectively to cholesterol in rafts without causing membrane damage (Proc. Natl. Acad. Sci. USA 98 (2001) 4926), we have investigated the effect of in vitro replicative aging of human diploid fibroblasts, TIG-1, on the distribution of plasma membrane cholesterol. The amount of BCtheta-labeled membrane cholesterol decreased during replicative aging of TIG-1 cells, whereas total cholesterol increased somewhat. The relationship was confirmed by double staining with BCtheta and senescence-associated-beta-galactosidase, a biomarker of senescent cells. Cell fractionation experiments revealed decreases in both cholesterol in rafts and a raft marker, flotillin, during replicative aging. In addition, hydroxyurea-induced prematurely senescent cells also showed a lower level of BCtheta-labeled cholesterol than untreated cells, despite maintaining the total amount of cholesterol. When TIG-1 cells were cultured in cholesterol-deficient medium, BCtheta labeling was first diminished and then premature senescence was induced. Taken together with the reduced signaling capacity of aged cells, these results suggest that plasma membrane cholesterol in raft microdomains is more sensitive to senescence than total cholesterol and is a primary target in aging.  相似文献   

4.
The attachment of palmitic acid to the amino acid cysteine via thioester linkage (S-palmitoylation) is a common post-translational modification of eukaryotic proteins. In this review, we discuss the role of palmitoylation as a versatile protein sorting signal, regulating protein trafficking between distinct intracellular compartments and the micro-localization of proteins within membranes.  相似文献   

5.
Platelet interactions with collagen are orchestrated by the presence or the migration of platelet receptor(s) for collagen into lipid rafts, which are specialized lipid microdomains from the platelet plasma membrane enriched in signalling proteins. Electron microscopy shows that in resting platelets, TIIICBP, a receptor specific for type III collagen, is present on the platelet membrane and associated with the open canalicular system, and redistributes to the platelet membrane upon platelet activation. After platelet lysis by 1% Triton X-100 and the separation of lipid rafts on a discontinuous sucrose gradient, TIIICBP is recovered in lipid raft-containing fractions and Triton X-100 insoluble fractions enriched in cytoskeleton proteins. Platelet aggregation, induced by type III collagen, was inhibited after disruption of the lipid rafts by cholesterol depletion, whereas platelet adhesion under static conditions did not require lipid raft integrity. These results indicate that TIIICBP, a platelet receptor involved in platelet interaction with type III collagen, is localized within platelet lipid rafts where it could interact with other platelet receptors for collagen (GP VI and α2β1 integrin) for efficient platelet activation. Pascal Maurice and Ludovic Waeckel have contributed equally to this work.  相似文献   

6.
Ca2+ is a major signaling molecule in both excitable and non-excitable cells, where it serves critical functions ranging from cell growth to differentiation to cell death. The physiological functions of these cells are tightly regulated in response to changes in cytosolic Ca2+ that is achieved by the activation of several plasma membrane (PM) Ca2+ channels as well as release of Ca2+ from the internal stores. One such channel is referred to as store-operated Ca2+ channel that is activated by the release of endoplasmic reticulum (ER) Ca2+ which initiates store-operated Ca2+ entry (SOCE). Recent advances in the field suggest that some members of TRPCs and Orai channels function as SOCE channels. However, the molecular mechanisms that regulate channel activity and the exact nature of where these channels are assembled and regulated remain elusive. Research from several laboratories has demonstrated that key proteins involved in Ca2+ signaling are localized in discrete PM lipid rafts/caveolar microdomains. Lipid rafts are cholesterol and sphingolipid-enriched microdomains that function as unique signal transduction platforms. In addition lipid rafts are dynamic in nature which tends to scaffold certain signaling molecules while excluding others. By such spatial segregation, lipid rafts not only provide a favorable environment for intra-molecular cross-talk but also aid to expedite the signal relay. Importantly, Ca2+ signaling is shown to initiate from these lipid raft microdomains. Clustering of Ca2+ channels and their regulators in such microdomains can provide an exquisite spatiotemporal regulation of Ca2+-mediated cellular function. Thus in this review we discuss PM lipid rafts and caveolae as Ca2+-signaling microdomains and highlight their importance in organizing and regulating SOCE channels.  相似文献   

7.
Saposin C (Sap C) is a small glycoprotein required by glucosylceramidase (GCase) for hydrolysis of glucosylceramide to ceramide and glucose in lysosomes. The molecular mechanism underlying Sap C stimulation of the enzyme activation is not fully understood. Here, atomic force microscopy (AFM) has been used to study Sap C-membrane interactions under physiological conditions. First, to establish how Sap C-membrane interactions affect membrane structure, lipid bilayers containing zwitterionic and anionic phospholipids were used. It was observed that Sap C induced two types of membrane restructuring effects, i.e., the formation of patch-like domains and membrane destabilization. Bilayers underwent extensive structural reorganization. To validate the biological importance of the membrane restructuring effects, interaction of Sap C with lipid bilayers composed of cholesterol, sphingomyelin, and zwitterionic and anionic phospholipids were studied. Although similar membrane restructuring effects were observed, Sap C-membrane interactions, in this case, were remarkably modulated and their effects were restricted to a limited area. As a result, nanometer-sized domains were formed. The establishment of a model membrane system will allow us to further study the dynamics, structure and mechanism of the Sap C-associated membrane domains and to examine the important role that these domains may play in enzyme activation.  相似文献   

8.
Lipid rafts display a lateral heterogeneity forming membrane microdomains that hold a fundamental role on biological membranes and are indispensable to physiological functions of cells. Oxidative stress in cellular environments may cause lipid oxidation, changing membrane composition and organization, thus implying in effects in cell signaling and even loss of homeostasis. The individual contribution of oxidized lipid species to the formation or disruption of lipid rafts in membranes still remains unknown. Here, we investigate the role of different structures of oxidized phospholipids on rafts microdomains by carefully controlling the membrane composition. Our experimental approach based on fluorescence microscopy of giant unilamellar vesicles (GUV) enables the direct visualization of the impact of hydroperoxidized POPC lipid (referred to as POPCOOH) and shortened chain lipid PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine) on phase separation. We found that the molecular structure of oxidized lipid is of paramount importance on lipid mixing and/or demixing. The hydrophobic mismatch promoted by POPCOOH coupled to its cylindrical molecular shape favor microdomains formation. In contrast, the conical shape of PazePC causes disarrangement of lipid 2D organized platforms. Our findings contribute to better unraveling how oxidized phospholipids can trigger formation or disruption of lipid rafts. As a consequence, phospholipid oxidation may indirectly affect association or dissociation of key biomolecules in the rafts thus altering cell signaling and homeostasis.  相似文献   

9.
10.
Measurements of contact-dependent fluorescence quenching and of fluorescence resonance energy transfer (FRET) within bilayers provide information concerning the spatial relationships between molecules on distance scales of a few nm or up a few tens of nm, respectively, and are therefore well suited to detect the presence and composition of membrane microdomains. As described in this review, techniques based on fluorescence quenching and FRET have been used to demonstrate the formation of nanoscale liquid-ordered domains in cholesterol-containing model membranes under physiological conditions, and to investigate the structural features of lipids and proteins that influence their partitioning between liquid-ordered and liquid-disordered domains. FRET-based methods have also been used to test for the presence of ‘raft’ microdomains in the plasma membranes of mammalian cells. We discuss the sometimes divergent findings of these studies, possible modifications to the ‘raft hypothesis’ suggested by studies using FRET and other techniques, and the further potential of FRET-based methods to test and to refine current models of the nature and organization of membrane microdomains.  相似文献   

11.
The dopamine D2 receptor belongs to the serpentine superfamily of receptors, which have seven transmembrane segments and activate G proteins. D2 receptors are known to be linked, through Galpha(o)- and Galpha(i)-containing G proteins, to several signaling pathways in neuronal and secretory cells, including inhibition of adenylyl cyclase and high voltage-activated Ca2+ channels (HVA-CCs). The dopamine D2 receptor exists in two alternatively spliced isoforms, "long" and "short" (D2L, and D2S, respectively), which have identical ligand binding sites but differ by 29 amino acids in the third intracellular loop, the proposed site for G protein interaction. This has led to the speculation that the two isoforms may interact with different G proteins. We have transfected the AtT20 cell line with either D2L (KCL line) or D2S (KCS line) to facilitate experimentation on the individual isoforms. Both lines show dopamine agonist-dependent inhibition of Q-type HVA-CCs. We combined G protein antisense knock-down studies with multiwavelength fluorescence video microscopy to measure changes in HVA-CC inhibition to investigate the possibility of differential G protein coupling to this inhibition. The initial, rapid, K+ depolarization-induced increase in intracellular Ca2+ concentration is due to influx through HVA-CCs. Our studies reveal that both D2 isoforms couple to Galpha(o) to partially inhibit this influx. However, D2L also couples to Galpha(i)3, whereas D2S couples to Galpha(i)2. These data support the hypothesis of differential coupling of D2 receptor isoforms to G proteins.  相似文献   

12.
The disialoganglioside GD3 (CD60 a) and its O-acetylated variants have previously been described as surface molecules of human T lymphocytes of the peripheral blood system. Here we report the expression of the 9-O-, and 7-O-acetylated disialoglycans of GD3 (CD60 b and CD60 c respectively) on human tonsillar lymphocytes. CD60 b and c are surface-expressed on activated germinal centre B cells and colocalize in raft-like structures on the cell surface together with the cytoplasmic tyrosine kinase Lyn and Syk. Addition of CD60 b and c mAb together with anti-IgM/IL-4 to in vitro cultivated tonsillar B cells resulted in a costimulatory effect. During spontaneous and staurosporine-induced apoptosis a distinct population of activated annexin V+/CD60 b+/CD60 c- B cells was observed. CD60 b and c are also found on cells of the extrafollicular T cell area. On tonsillar T cells, CD60 b mAb had a costimulatory effect together with PHA while CD60 c mAb alone was sufficient to induce proliferation. In further contrast to B cells, during apoptosis a distinct CD60 b+ T cell subpopulation was not observed. Together, surface-expressed CD60 b and c are differently expressed on tonsillar B and T cells and may be involved in the regulation of activation and apoptosis of lymphocytes in secondary lymphatic tissue.  相似文献   

13.
Previous studies suggest that localization of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family members is important for regulating their signal transduction. During a screen for TRAF3-associated proteins that potentially alter TRAF3 subcellular localization and enable signal transduction, we identified a novel protein, T3JAM (TRAF3-interacting Jun N-terminal kinase (JNK)-activating modulator). This protein associates specifically with TRAF3 but not other TRAF family members. Coexpression of T3JAM with TRAF3 recruits TRAF3 to the detergent-insoluble fraction. More importantly, T3JAM and TRAF3 synergistically activate JNK but not nuclear factor (NF)-kappaB. Our studies indicate that T3JAM may function as an adapter molecule that specifically regulates TRAF3-mediated JNK activation.  相似文献   

14.
The polyunsaturated fatty acid docosahexaenoic acid (DHA, 22 : 6, n-3) is found at a level of about 50% in the phospholipids of neuronal tissue membranes and appears to be crucial to human health. Dipalmitoyl phosphatidylcholine (DPPC, 16 : 0/16 : 0 PC) and the DHA containing 1-stearoyl-2-docosahexenoyl phosphatidylserine (SDPS) were used to make DPPC (60%)/SDPS (40%) bilayers with and without 10 mol% chlorpromazine (CPZ), a cationic, amphiphilic phenothiazine.

Resonances that are present in 13C NMR spectrum of the DPPC (60%)/SDPS (40%) sample and that disappear in presence of 10% CPZ most probably are due to the special interface environment, e.g. the hydrophobic mismatch, at the interface of DPPC and SDPS microdomains in the DPPC/SDPS bilayer. In itself the appearance of resonances at novel chemical shift values is a clear demonstration of a unique chemical environment in the DPPC (60%)/SDPS (40%) bilayer. The findings of the study presented here suggest CPZ bound to the phosphate of SDPS will slow down and partially inhibit such a DHA acyl chain movement in the DPPC/SDPS bilayer. This would affect the area occupied by a SDPS molecule (in the bilayer) and probably the thickness of the bilayer where SDPS molecules reside as well. It is quite likely that such CPZ caused changes can affect the function of proteins embedded in the bilayer.  相似文献   


15.
INTRODUCTI0NThedifferentiati0nofcelIsalongthemonocyte-macr0phagepathwayandthesig-nalsinvo1vedinthesecel1sacquiringtheabilitytokilltum0rcellsarenotfllllyundersto0d.Wehavebeenstudingamoleculewhichappearst0beanimportantmemberofthecytokinenetworkinvo1vedintheregulati0nmonocyteactivation.ThiscytokinetermedP48wasisolatedfr0mthehllmannullcellleukemiacell1ineReh.IthasbeenpurifiedtohomogeneityandfOundtobedistinctfrominterferongamma,col0nystimulatingfactors(CSFs)andTNFalphaalldbeta[1,2].Func-ti…  相似文献   

16.
Lipopolysaccharide (LPS; endotoxin) is an essential component of the outer monolayer of nearly all Gram-negative bacteria. LPS is composed of a hydrophobic anchor, known as lipid A, an inner core oligosaccharide, and a repeating O-antigen polysaccharide. In nearly all species, the first sugar bridging the hydrophobic lipid A and the polysaccharide domain is 3-deoxy-d-manno-octulosonic acid (Kdo), and thus it is critically important for LPS biosynthesis. Modifications to lipid A have been shown to be important for resistance to antimicrobial peptides as well as modulating recognition by the mammalian innate immune system. Therefore, lipid A derivatives have been used for development of vaccine strains and vaccine adjuvants. One derivative that has yet to be studied is 8-amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N), which is found exclusively in marine bacteria of the genus Shewanella. Using bioinformatics, a candidate gene cluster for Kdo8N biosynthesis was identified in Shewanella oneidensis. Expression of these genes recombinantly in Escherichia coli resulted in lipid A containing Kdo8N, and in vitro assays confirmed their proposed enzymatic function. Both the in vivo and in vitro data were consistent with direct conversion of Kdo to Kdo8N prior to its incorporation into the Kdo8N-lipid A domain of LPS by a metal-dependent oxidase followed by a glutamate-dependent aminotransferase. To our knowledge, this oxidase is the first enzyme shown to oxidize an alcohol using a metal and molecular oxygen, not NAD(P)+. Creation of an S. oneidensis in-frame deletion strain showed increased sensitivity to the cationic antimicrobial peptide polymyxin as well as bile salts, suggesting a role in outer membrane integrity.  相似文献   

17.
Mammalian cells contain two forms of thioredoxin reductase (TrxR), cytosolic TrxR1 and mitochondrial TrxR2. To investigate the biological roles of TrxR2, we generated stable HeLa cell lines expressing a dominant negative form of TrxR2 (TrxR2DN) under the control of the tetracycline-off system. We observed that TrxR2DN-induced cells, following stimulation with EGF, produced more hydrogen peroxide than uninduced cells. The extent of protein tyrosine phosphorylation of many proteins including ERK was higher in TrxR2DN-induced cells than in uninduced cells when stimulated with fetal bovine serum or EGF. Induction of TrxR2DN also resulted in the increased rate of progression of G1 to S phase in cell cycle and cell proliferation and affected the expression of many proteins involved in cell cycle. These results suggest that TrxR2 participates in the regulation of protein tyrosine phosphorylation and cell growth as a component of the mitochondria specific H2O2-eliminating system that includes peroxiredoxin III and thioredoxin 2.  相似文献   

18.
He Q  Bhandari N  Sharma RP 《Life sciences》2002,71(17):2015-2023
Fumonisin B(1) (FB(1)), produced by Fusarium verticillioides, is a common contaminant in foods and feeds. Increase in tissue free sphingoid bases resulting from the inhibition of ceramide synthase is a biomarker of fumonisin exposure. Tumor necrosis factor alpha (TNFalpha) is induced in liver in response to FB(1) treatment. This study determined whether fumonisin B(1) caused increases in free sphingoid bases and altered the expression of TNFalpha in heart and lung, organs that are not targets of FB(1) toxicity, of male and female mice treated with 5-daily subcutaneous injection of 2.25 mg/kg FB(1). A significant increase in free sphingoid bases was observed in both heart and lung of FB(1)-exposed mice. The magnitude of increases in free sphingoid bases in both organs of female mice was much higher than that in males. The expression of TNFalpha was increased by FB(1) treatment in the lung of male mice and in the heart of female mice, whereas the expression of interferon gamma was unaltered. Results suggest that both sphingolipid accumulation and TNFalpha induction are observed in the tissues of mice that are not associated with FB(1) toxicity.  相似文献   

19.
In the past fifteen years the notion that cell membranes are not homogenous and rely on microdomains to exert their functions has become widely accepted. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. They play a role in cellular physiological processes such as signalling, and trafficking but are also thought to be key players in several diseases including viral or bacterial infections and neurodegenerative diseases. Yet their existence is still a matter of controversy. Indeed, lipid raft size has been estimated to be around 20 nm, far under the resolution limit of conventional microscopy (around 200 nm), thus precluding their direct imaging. Up to now, the main techniques used to assess the partition of proteins of interest inside lipid rafts were Detergent Resistant Membranes (DRMs) isolation and co-patching with antibodies. Though widely used because of their rather easy implementation, these techniques were prone to artefacts and thus criticized. Technical improvements were therefore necessary to overcome these artefacts and to be able to probe lipid rafts partition in living cells. Here we present a method for the sensitive analysis of lipid rafts partition of fluorescently-tagged proteins or lipids in the plasma membrane of living cells. This method, termed Fluorescence Correlation Spectroscopy (FCS), relies on the disparity in diffusion times of fluorescent probes located inside or outside of lipid rafts. In fact, as evidenced in both artificial membranes and cell cultures, probes would diffuse much faster outside than inside dense lipid rafts. To determine diffusion times, minute fluorescence fluctuations are measured as a function of time in a focal volume (approximately 1 femtoliter), located at the plasma membrane of cells with a confocal microscope (Fig. 1). The auto-correlation curves can then be drawn from these fluctuations and fitted with appropriate mathematical diffusion models. FCS can be used to determine the lipid raft partitioning of various probes, as long as they are fluorescently tagged. Fluorescent tagging can be achieved by expression of fluorescent fusion proteins or by binding of fluorescent ligands. Moreover, FCS can be used not only in artificial membranes and cell lines but also in primary cultures, as described recently. It can also be used to follow the dynamics of lipid raft partitioning after drug addition or membrane lipid composition change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号