首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous energy-dispersive x-ray analysis studies of globoid crystal composition in seed protein bodies gave an indication that there might be a correlation between seed size and the type of elements stored in globoid crystals. This possibility was tested by conducting energy-dispersive x-ray analysis studies of P, K, Mg, and Ca levels in globoid crystals of four embryo regions (radicle, stem, cotyledon center palisade mesophyll, cotyledon center spongy mesophyII) in each of five different Cucurbita species (C. mixta, C. moschata, C. foetidissima, C. pepo, and C. andreana). The species were chosen to provide a range of seed size and weight. Globoid crystals from all embryo regions in all five species contained P, K, and Mg. Some variations in the levels of these elements did occur but there was no consistent pattern with regard to area of the seed or with regard to seed size. Calcium distribution showed significant variations. In species with large seeds (C. mixta, C. moschata) Ca was mainly found in globoid crystals in the radicle. Globoid crystals in species with small seeds (C. foetidissima, C. pepo, C. andreana) contained Ca in all embryo regions tested. The results of this study support the concept that Ca distribution in globoid crystals can be correlated with seed weight.  相似文献   

2.
Light and chlorophyll gradients within Cucurbita cotyledons   总被引:1,自引:4,他引:1  
Abstract. Measurement of light within 10–14-d-old green and etiolated Cucurbita pepo cotyledons were made with fibre-optic microprobes to assess the influence of chlorophyll distribution and anatomical variations in mesophyll cell type (spongy versus palisade) on internal light pattern. More than 50% of the pigment in green cotyledons occurred in the upper (adaxial) 300 μm and this gradient strongly influenced the internal propagation of 680 nm light. When the upper (adaxial) surface was irradiated with 680 nm light, almost complete absorption occurred within the first 400 μm (palisade) of approximately 1200-μm-thick cotyledons. In contrast, when lower (abaxial) surfaces were irradiated with 680 nm light, penetration extended throughout the spongy mesophyll to about the 700 μm depth. Measurements of collimaled and scattered light gradients at 550, 680 and 750 nm indicated that collimaled light was rapidly scattered by mesophyll cells. In cotyledons irradiated on the upper surface, spongy mesophyll cells received only scattered light. Furthermore, comparisons of scattered light gradients obtained from cotyledons irradiated on upper and lower surfaces suggested that spongy mesophyll cells scatter light more effectively than palisade cells, probably due to the greater proportion of intercellular air spaces in spongy mesophyll tissue. These data also indicate that both the spectral quality and quantity of light incident on palisade versus spongy mesophyll cells differs, perhaps contributing to developmental and physiological differences between these two mesophyll cell types.  相似文献   

3.
Mineral reserves in castor beans: the dry seed   总被引:3,自引:1,他引:2       下载免费PDF全文
Elemental composition and distribution of the mineral reserves in the endosperm and embryo tissues of Ricinus communis cultivars Hale and Zanzibarensis were investigated. Energy dispersive x-ray analysis was used to determine the elemental composition of the globoid crystals, while atomic absorption spectrometry allowed quantification of the elements, particularly Ca, in various seed regions. No major differences were found between the two cultivars with regard to the elemental distribution in globoid crystals. While the majority of globoid crystals contained P, K, and Mg, the occasional one also contained Ca. In extremely rare instances, Fe was detected in globoid crystals. Ca-containing globoid crystals were more common in provascular cell protein bodies in the stem and radicle. Polarized light microscopy, micro-incineration, and acid solubility tests demonstrated the presence of calcium oxalate crystals in the innermost testa which adheres to the endosperm and is often mistakenly identified as endosperm. Atomic absorption spectrometry revealed that most of the calcium present in castor bean seeds is localized in the testa. On a perseed-region basis, the much larger endosperm contains more Ca than does the embryo. However, on a unit-weight basis, the radicle-plus-stem regions contain considerably more Ca than does the cotyledon or endosperm, an observation that is consistent with the observed distribution pattern for Ca-containing globoid crystals.  相似文献   

4.
The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis.  相似文献   

5.
Certain members of the family Chenopodiaceae are the dominant species of the deserts of Central Asia; many of them are succulent halophytes which exhibit C4-type CO2 fixation of the NAD- or NADP-ME (malic enzyme) subgroup. In four C4 species of the tribe Salsoleae, the Salsoloid-type Kranz anatomy in leaves or stems was studied in relation to the diversity in anatomy which was found in cotyledons. Halocharis gossypina, has C4 NAD-ME Salsoloid-type photosynthesis in leaves and C3 photosynthesis in dorsoventral non-Kranz cotyledons; Salsola laricina has C4 NAD-ME Salsoloid-type leaves and C4 NAD-ME Atriplicoid-type cotyledons; Haloxylon persicum, has C4 NADP-ME Salsoloid-type green stems and C3 isopalisade non-Kranz cotyledons; and S. richteri has C4 NADP-ME Salsoloid-type leaves and cotyledons. Immunolocalization studies on Rubisco showed strong labelling in bundle sheath cells of leaves and cotyledons of organs having Kranz anatomy. The C4 pathway enzyme phosphoenolpyruvate carboxylase was localized in mesophyll cells, while the malic enzymes were localized in bundle sheath cells of Kranz-type tissue. Immunolocalization by electron microscopy showed NAD-ME is in mitochondria while NADP-ME is in chloroplasts of bundle sheath cells in the respective C4 types. In some C4 organs, it was apparent that subepidermal cells and water storage cells also contain some chloroplasts which have Rubisco, store starch, and thus perform C3 photosynthesis. In non-Kranz cotyledons of Halocharis gossypina and Haloxylon persicum, Rubisco was found in chloroplasts of both palisade and spongy mesophyll cells with the heaviest labelling in the layers of palisade cells, whereas C4 pathway proteins were low or undetectable. The pattern of starch accumulation correlated with the localization of Rubisco, being highest in the bundle sheath cells and lowest in the mesophyll cells of organs having Kranz anatomy. In NAD-ME-type Kranz organs (leaves and cotyledons of S. laricina and leaves of H. gossypina the granal index (length of appressed membranes as a percentage of total length of all membranes) of bundle sheath chloroplasts is 1.5 to 2.5 times higher than that of mesophyll chloroplasts. In contrast, in the NADP-ME-type Kranz organs (S. richteri leaves and cotyledons and H. persicum stems) the granal index of mesophyll chloroplasts is 1.5 to 2.2 times that of the bundle sheath chloroplasts. The mechanism of photosynthesis in these species is discussed in relation to structural differences.  相似文献   

6.
Structural Adaptation of the Leaf Mesophyll to Shading   总被引:1,自引:0,他引:1  
Structural characteristics of the mesophyll were studied in five boreal grass species experiencing a wide range of light and water supply conditions. Quantitative indices of the palisade and spongy mesophyll tissues (cell and chloroplast sizes, the number of chloroplasts per cell, the total cell and chloroplast surface area per unit leaf surface area) were determined in leaves of each of the species. The cell surface area and the cell volume in spongy mesophyll were determined with a novel method based on stereological analysis of cell projections. An important role of spongy parenchyma in the photosynthetic apparatus was demonstrated. In leaves of the species studied, the spongy parenchyma constituted about 50% of the total volume and 40% of the total surface area of mesophyll cells. The proportion of the palisade to spongy mesophyll tissues varied with plant species and growth conditions. In a xerophyte Genista tinctoria, the total cell volume, cell abundance, and the total surface area of cells and chloroplasts were 30–40% larger in the palisade than in the spongy mesophyll. In contrast, in a shade-loving species Veronica chamaedris, the spongy mesophyll was 1.5–2 times more developed than the palisade mesophyll. In mesophyte species grown under high light conditions, the cell abundance and the total cell surface area were 10–20% greater in the palisade mesophyll than in the spongy parenchyma. In shaded habitats, these indices were similar in the palisade and spongy mesophyll or were 10–20% lower in the palisade mesophyll. In mesophytes, CO2 conductance of the spongy mesophyll accounted for about 50% of the total mesophyll conductance, as calculated from the structural characteristics, with the mesophyll CO2 conductance increasing with leaf shading.  相似文献   

7.
Lott JN 《Plant physiology》1975,55(5):913-916
Energy dispersive x-ray analysis was used to study the composition of certain protein body components in Cucurbita maxima cotyledons. The globoid crystal was rich in phosphorus, potassium, and magnesium. This elemental composition provides further evidence that the globoid crystal in squash cotyledon protein bodies is composed of phytin, a myoinositol hexaphosphoric acid salt of potassium and magnesium. Calcium, a common component of phytin in many species, was absent or present in only trace amounts in the globoid crystals of squash. Results of analyses of globoid crystals from seeds produced in different parts of North America suggest that there is definite specificity for the cations used in phytin deposition. Variations in soil types and other environmental factors seem not to have influenced the type of cation stored. Energy dispersive x-ray analysis of the proteinaceous regions revealed the presence of phosphorus, sulfur, and a trace of chlorine. Sulfur was expected, due to the presence of some sulfur containing amino acids in the protein.  相似文献   

8.

Background and Aims

Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution.

Methods

Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM).

Key Results

Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply.

Conclusions

The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.  相似文献   

9.
Nitrogen and carbohydrate assimilates were temporally and spatially compartmented among various cell types in soybean (Glycine max L., Merr.) leaves during seed filling. The paraveinal mesophyll (PVM), a unique cell layer found in soybean, was demonstrated to function in the synthesis, compartmentation and remobilization of nitrogen reserves prior to and during the seed-filling stages. At anthesis, the PVM vacuoles contain substantial protein which completely disappears by two weeks into the seed filling. Distinct changes in the PVM cytoplasm, tonoplast and organelles were correlated with the presence or absence of the vacuolar material. Microautoradiography following the accumulation of several radiolabeled sugars and amino acids demonstrated the glycoprotein nature of the vacuolar material. Incorporation of methionine, leucine, glucose, and glucosamine resulted in heavy labelling of the PVM vacuole, in contrast to galactose, proline, and mannose which resulted in a much reduced labelling pattern. In addition, starch is unequally compartmented and degraded among the various leaf cells during seed filling. At the end of the photoperiod at the flowering stage, the highest starch accumulation was in the second palisade layer followed by the spongy mesophyll and the first (uppermost) palisade layer. Starch in the first palisade layer was completely degraded during the dark whereas the starch in the second palisade and spongy mesophyll was not remobilized to any appreciable extent. By mid-podfilling (approximately five weeks postanthesis) starch was absent in the first palisade layer at the end of the photoperiod while the second palisade and spongy mesophyll layers contained substantial starch. Starch was remobilized from these latter cells during the remainder of seed filling when current photosynthetic production is low. Structural changes associated with cell senescence first appear in the upper palisade layer and then progress (excluding the PVM) to the second palisade and spongy mesophyll layer. The PVM and phloem appear to retain their structural integrity into the leaf yellowing stage. Reducing sink capacity by pod removal resulted in a continued accumulation of vacuolar protein, an increase in cytoplasmic volume, and fragmentation of the vacuole in the PVM. Pod removal also resulted in an increased amount of accumulated starch (which did not turn over) in all mesophyll layers, and an increase in cell size and cell-wall thickness.  相似文献   

10.
Guard cells, epidermal cells, palisade parenchyma cells, and spongy parenchyma cells of Vicia faba L. leaflet were analyzed for inorganic phosphate and phosphorus. On a molar basis, cells in the epidermal layer contained about 15-fold more inorganic phosphate than mesophyll cells did. Although a metabolic role for this asymmetric distribution cannot be defined unequivocally, we note that high epidermal inorganic phosphate would buffer against pH changes in the epidermis during stomatal movements.  相似文献   

11.
Measurement of light within thin plant tissues with fiber optic microprobes   总被引:1,自引:0,他引:1  
Vogelmann, T. C., Knapp, A. K., McClean, T. M. and Smith, W. K. 1988. Measurement of light within thin plant tissues with fiber optic microprobes. - Physiol. Plant. 72: 623–630.
The measurement of light with fiber optic microprobes has been extended to thin (200–300 μm) plant tissue samples. To test the method, light measurements were made in thin aqueous films and paradermal sections from 10-day-old etiolated Cucurbita pepo L. cv. Fordhook cotyledons. The measurements obtained were highly reproducible. Paradermal sections of spongy mesophyll that were irradiated with collimated light scattered light more effectively than the palisade layer of intact cotyledons. These results demonstrate that different plant tissues have different light scattering characteristics. The successful extension of the fiber optic microprobe technique to thin systems makes it possible to examine the optical properties of different cell layers within leaves and other plant organs.  相似文献   

12.
Four-year-old seedlings ofQuercus petraea (Matt.) Liebl. andNothofagus procera (Poepp. et Endl.) Querst were grown outdoors in pots while subjected to full, medium and low irradiances. Shading and decrease in height of leaf attachment generally increased specific leaf area, the diameters of chloroplasts and of palisade and spongy mesophyll cells, but decreased leaf thickness, number of palisade cell layers, length of palisade and spongy mesophyll cells, number of chloroplasts per mesophyll cell and epidermal cell and cuticle thickness, stomata and hair densities per unit leaf area, hair length, maximum hair breath and cell wall thickness in the two species. However, inN. procera grown under full irradiance, leaves at the upper and middle positions had hairs on both upper and lower epidermes, whereas those in other treatments and all leaves in all treatments inQ. petraea, had theirs only on the upper epidermis.  相似文献   

13.
Storey R  Leigh RA 《Plant physiology》2004,136(3):3838-3848
Citrus leaves accumulate large amounts of calcium that must be compartmented effectively to prevent stomatal closure by extracellular Ca2+ and interference with Ca(2+)-based cell signaling pathways. Using x-ray microanalysis, the distribution of calcium between vacuoles in different cell types of leaves of rough lemon (Citrus jambhiri Lush.) was investigated. Calcium was accumulated principally in palisade, spongy mesophyll, and crystal-containing idioblast cells. It was low in epidermal and bundle sheath cells. Potassium showed the reverse distribution. Rubidium and strontium were used as tracers to examine the pathways by which potassium and calcium reached these cells. Comparisons of strontium and calcium distribution indicated that strontium is a good tracer for calcium, but rubidium did not mirror the potassium distribution pattern. The amount of strontium accumulated was highest in palisade cells, lowest in bundle sheath and epidermal cells, and intermediate in the spongy mesophyll. Accumulation of strontium in palisade and spongy mesophyll was accompanied by loss of potassium from these cells and its accumulation in the bundle sheath. Strontium moved apoplastically from the xylem to all cell types, and manipulation of water loss from the adaxial leaf surface suggested that diffusion is responsible for strontium movement to this side of the leaf. The results highlight the importance of palisade and spongy mesophyll as repositories for calcium and suggest that calcium distribution between different cell types is the result of differential rates of uptake. This tracer technique can provide important information about the ion uptake and accumulation properties of cells in intact leaves.  相似文献   

14.
The aim of the study was to show which tissues and cell types of the cotyledon of Ricinus communis L. are responsible for uptake of sucrose by H+-sucrose symport. The cotyledons were incubated in labelled sucrose for up to 20 min and then the amount of radioactivity in each cell type of the cotyledon was assessed by microautoradiography. It was found that 50% of the label was present in the spongy mesophyll, and 10–15% was in the bundles, the epidermal layers and the palisade parenchyma. The sieve tubes contained only 2–3% of the label. The addition of sucrose to cotyledons depolarized the membrane of spongy-mesophyll cells by 33 mV. Therefore, it was concluded that the previously found H+-sucrose symport is at least partly located at the spongy mesophyll. No precursor-like behaviour of the label in mesophyll or bundle-sheath cells was observed in pulse-chase experiments, which indicates a direct uptake of sucrose by the sieve tube-companion cell complex from the apoplast.This work was funded by Deutsche Forschungsgemeinschaft. The valuable help by Ina Möller, Elke Schmidt, Christian Schobert (all from Bayreuth, FRG), Dr. Dieter Gradmann (Göttingen, FRG), Dr. Jörg Tittor (MPI Biochemie München, FRG), Dr. Pavlovkin (Plant Pathology, Bratislava), Dr. K. Köhler (Botany Department Würzburg, FRG) and the intense discussions with Dr. Enno Brinkmann (Bayreuth) are gratefully acknowledged. The technical assistance by Beatrix Tannhäuser-Hofmann and Hildegard Stork was of great help for this work.  相似文献   

15.
The size, shape, and number of chloroplasts in the palisade and spongy parenchyma layers of Haberlea rhodopensis leaves changed significantly during desiccation and following rehydration. The chloroplasts became smaller and more rounded during desiccation, and aggregated in the middle of the cell. The size and number of chloroplasts in the palisade parenchyma cells were higher than in spongy parenchyma. The good correlation observed between the size or number of chloroplasts and the cross-sectional area of mesophyll cells, the cross-sectional width of the leaf and its water content suggested that the palisade cells were more responsive to water availability than the spongy cells. Changes in chloroplast number during desiccation and rehydration process are characteristic features for desiccation-tolerant plants (especially in homoiochlorophyllous strategy).  相似文献   

16.
Light gradients were measured in leaves that had different types of anatomical development of the mesophyll but similar pigment content. Leaves of the legume, Thermopsis montana, had columnar palisade and spongy mesophyll whereas leaves of the monocot, Smilacina stellata, had spongy mesophyll only. Light gradients were measured at 550 nm in both types of leaves when they were irradiated with collimated or diffuse light. When irradiated with collimated light, light gradients were steeper in leaves with spongy mesophyll in comparison to those that had palisade tissue. On the other hand, light gradients were similar between both leaf types when they were irradiated with diffuse light. Thus, columnar palisade cells facilitated the penetration of collimated light over diffuse light. These results suggest that palisade tissue may help distribute light more uniformly to chloroplasts within the leaf. Moreover, the functional significance of palisade tissue may be related to the amount of collimated light within the natural environment.  相似文献   

17.
番荔枝科蚁花属和澄广花属叶的比较解剖学研究   总被引:1,自引:1,他引:0  
利用扫描电镜技术,叶片离析方法和石蜡切片法对蚁花属1种和澄广花属9种植物叶的形态结构进行比较研究。结果表明,两属植物有许多相似之处,但又有以下一些显著不同;蚁花属植物叶表皮细胞均具一晶族,叶肉组织中具1-2层栅栏组织细胞,油细胞均匀分布在栅栏组织和海绵组织中,栅栏组织在主脉处不连续,而澄广花属植物叶的表皮细胞内具一单斜晶,叶肉组织中具1层栅栏组织细胞,油细胞仅分布在海绵组织中,栅栏组织在主脉处连续,结果为蚁花属和澄广花属的分类学处理提供了新证据。  相似文献   

18.
Energy-dispersive x-ray analysis was used to investigate the elemental storage within protein bodies, specifically the globoid crystals, in grains of wheat. Areas of the grain investigated included various parts of the embryo, the aleurone layer plus starchy endosperm near the embryo and the aleurone layer plus starchy endosperm farthest from the embryo. Variations did occur grain-to-grain, cell-to-cell and, in certain regions, intracellularly. No protein bodies with electron-dense globoid crystals were found in the starchy endosperm. Generally globoid crystals contained P, K, and Mg in all areas investigated. Globoid crystals from the aleurone layer farthest from the embryo on occasion contained Ca, whereas aleurone globoid crystals near the embryo sometimes contained Fe. In most of the embryo regions examined, a few globoid crystals contained Ca along with P, K, and Mg. No specific pattern to the Ca distribution could be found. Welldefined elemental distribution occurred with Mn. Manganese was found only in globoid crystals located in the base and midregions of the stele in the radicle. Thus, in wheat there is some specific distribution of minerals dependent upon cell type and/or position in the grain.  相似文献   

19.
Leaves of Peperomia camptotricha contain three distinct upper tissue layers and a one-cell thick lower epidermis. Light and dark CO2 fixation rates and the activity of ribulose bisphosphate carboxylase/oxygenase and several C4 enzymes were determined in the three distinct tissue layers. The majority of the C4 enzyme activity and dark CO2 fixation was associated with the spongy mesophyll, including the lower epidermis; and the least activity was found in the median palisade mesophyll. In contrast, the majority of the C3 activity, that is ribulose bisphosphate carboxylase/oxygenase and light CO2 fixation, was located in the palisade mesophyll. In addition, the diurnal flux in titratable acidity was greatest in the spongy mesophyll and lowest in the palisade mesophyll. The spatial separation of the C3 and C4 phases of carbon fixation in P. camptotricha suggests that this Crassulacean acid metabolism plant may have low photorespiratory rates when it exhibits daytime gas exchange (that is, when it is well watered). The results also indicate that this plant may be on an evolutionary path between a true Crassulacean acid metabolism plant and a true C4 plant.  相似文献   

20.
A histochemical study using light microscopy has been made ofthe distribution of acid phosphatase (EC 3.1.3.2 [EC] ) activity intransverse sections of fully expanded leaves of Lycopersiconesculentum grown in phosphate-deficient or sufficient media.Leaf tissues were prepared by two methods and were embeddedin paraffin wax. The location of acid phosphatase activity inleaf sections was determined by trapping orthophosphate releasedfrom p-nitrophenyl phosphate with lead acetate and subsequentlyconverting the lead phosphate to optically dense lead sulphide.In leaf sections from control tissue lead sulphide depositswere larpely confined to the spongy mesophyll cells. Whereasthe staining of the palisade cells was limited and of a granularnature, the staining of the spongy mesophyll cells was heavierand coincident with the outline of the individual cells. Moreover,the minor veins were more heavily stained than the surroundingmesophyll cells. Sections of phosphorus-deficient tissues wereheavily stained in both the palisade and spongy mesophyll layersand heavy deposits of lead sulphide were present in the regionsof the minor veins. It is suggested that the enhanced acid phosphataseactivity of the mesophyll cells in fully expanded leaves couldbe involved in the remobilization of phosphate within phosphorus-deficientplants, or be part of a phosphate transporting system, concentratingthe intracellular phosphate from the limiting supply in thesolution bathing the mesophyll cells. Lycopersicon esculentum L., tomato, acid phosphatase, phosphorus nutrition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号