首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid bile acid conjugates (FABACs) prevent and dissolve cholesterol gallstones and prevent diet induced fatty liver, in mice. The present studies aimed to test their hypocholesterolemic effects in mice. Gallstone susceptible (C57L/J) mice, on high fat (HFD) or regular diet (RD), were treated with the conjugate of cholic acid with arachidic acid (FABAC; Aramchol). FABAC reduced the elevated plasma cholesterol levels induced by the HFD. In C57L/J mice, FABAC reduced plasma cholesterol by 50% (p < 0.001). In mice fed HFD, hepatic cholesterol synthesis was reduced, whereas CYP7A1 activity and expression were increased by FABAC. The ratio of fecal bile acids/neutral sterols was increased, as was the total fecal sterol excretion. In conclusion, FABACs markedly reduce elevated plasma cholesterol in mice by reducing the hepatic synthesis of cholesterol, in conjunction with an increase of its catabolism and excretion from the body.  相似文献   

2.
We investigated the hypolipidemic effects of young persimmon fruit (YP) on apolipoprotein E-deficient C57BL/6.KOR-ApoEshl mice. These mice exhibited higher plasma cholesterols, except for high-density lipoprotein (HDL), and lower plasma HDL cholesterol than C57BL/6.Cr mice that had the same genetic background as the C57BL/6.KOR-ApoEshl mice. Male C57BL/6.KOR-ApoEshl mice (n=5) were fed a diet supplemented with dry YP, Hachiya-kaki, at a concentration of 5% (w/w) for 10 weeks. YP treatment significantly lowered plasma chylomicron, very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) cholesterols, and triglyceride, and this response was accompanied by an elevation of fecal bile acid excretion. In the liver, sterol regulatory element binding protein-2 gene expression was significantly higher in mice fed YP, while the mRNA and protein levels of the LDL receptor did not change. These results indicate that acceleration of fecal bile acid excretion is a major mechanism of the hypolipidemic effect induced by YP in C57BL/6.KOR-ApoEshl mice.  相似文献   

3.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

4.
The objective of the present study was to investigate the cholesterol-reducing effect of medium-chain fatty acids (MCFAs) completed by elevated excretion of fecal neutral steroids and/or bile acids. Blood and liver lipid profiles, fecal neutral steroids, bile acids, and mRNA and protein expression of the genes relevant to cholesterol homeostasis were measured and analyzed in C57BL/6J mice fed a cholesterol-rich diet with 2% caprylic acid or capric acid for 12 weeks. Blood total cholesterol and low-density lipoprotein cholesterol (LDL-c) levels were reduced significantly as compared to diet with palmitic acid or stearic acid. Caprylic acid promoted the excretion of fecal neutral steroids, especially cholesterol. The excretion of fecal bile acids, mainly in the form of cholic acid was enhanced and accompanied by elevated expression of mRNA and the protein of hepatic cholesterol 7α-hydroxylase (CYP7A1). These results indicate that MCFAs can reduce blood cholesterol by promoting the excretion of fecal cholesterol and cholic acid.  相似文献   

5.
The C57BL/6ByJ (B6By) mouse strain is resistant to diet-induced hypercholesterolemia and atherosclerosis, despite its near genetic identity with the atherosclerosis-susceptible C57BL/6J (B6J) strain. We previously identified a genetic locus, Diet1, which is responsible for the resistant phenotype in B6By mice. To investigate the function of Diet1, we compared mRNA expression profiles in the liver of B6By and B6J mice fed an atherogenic diet using a DNA microarray. These studies revealed elevated expression levels in B6By liver for key bile acid synthesis proteins, including cholesterol 7alpha-hydroxylase and sterol-27-hydroxylase, and the oxysterol nuclear receptor liver X receptor alpha. Expression levels for several other genes involved in bile acid metabolism were subsequently found to differ between B6By and B6J mice, including the bile acid receptor farnesoid X receptor, oxysterol 7alpha-hydroxylase, sterol-12alpha-hydroxylase, and hepatic bile acid transporters on both sinusoidal and canalicular membranes. The overall expression profile of the B6By strain suggests a higher rate of bile acid synthesis and transport in these mice. Consistent with this interpretation, fecal bile acid excretion is increased 2-fold in B6By mice, and bile acid levels in blood and urine are elevated 3- and 18-fold, respectively. Genetic analysis of serum bile acid levels revealed co-segregation with Diet1, indicating that this locus is likely responsible for both increased bile acid excretion and resistance to hypercholesterolemia in B6By mice.  相似文献   

6.
We investigated the hypolipidemic effects of young persimmon fruit (YP) on apolipoprotein E-deficient C57BL/6.KOR-ApoEshl mice. These mice exhibited higher plasma cholesterols, except for high-density lipoprotein (HDL), and lower plasma HDL cholesterol than C57BL/6.Cr mice that had the same genetic background as the C57BL/6.KOR-ApoEshl mice. Male C57BL/6.KOR-ApoEshl mice (n=5) were fed a diet supplemented with dry YP, Hachiya-kaki, at a concentration of 5% (w/w) for 10 weeks. YP treatment significantly lowered plasma chylomicron, very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) cholesterols, and triglyceride, and this response was accompanied by an elevation of fecal bile acid excretion. In the liver, sterol regulatory element binding protein-2 gene expression was significantly higher in mice fed YP, while the mRNA and protein levels of the LDL receptor did not change. These results indicate that acceleration of fecal bile acid excretion is a major mechanism of the hypolipidemic effect induced by YP in C57BL/6.KOR-ApoEshl mice.  相似文献   

7.
Blocking intestinal bile acid absorption by inhibiting the apical sodium codependent bile acid transporter (ASBT) is a target for increasing hepatic bile acid synthesis and reducing plasma LDL cholesterol. SC-435 was identified as a potent inhibitor of ASBT (IC50 = 1.5 nM) in cells transfected with the human ASBT gene. Dietary administration of 3 mg/kg to 30 mg/kg SC-435 to apolipoprotein E-/- (apoE-/-) mice increased fecal bile acid excretion by >2.5-fold. In vivo inhibition of ASBT also resulted in significant increases of hepatic mRNA levels for cholesterol 7alpha-hydroxylase and HMG-CoA reductase. Administration of 10 mg/kg SC-435 for 12 weeks to apoE-/- mice lowered serum total cholesterol by 35% and reduced aortic root lesion area by 65%. Treatment of apoE-/- mice also resulted in decreased expression of ileal bile acid binding protein and hepatic nuclear hormone receptor small heterodimer partner, direct target genes of the farnesoid X receptor (FXR), suggesting a possible role of FXR in SC-435 modulation of cholesterol homeostasis. In dogs, SC-435 treatment reduced serum total cholesterol levels by 相似文献   

8.
Interindividual and interstrain variations in cholesterol absorption efficiency occur in humans and animals. We investigated physiological biliary and small intestinal factors that might determine variations in cholesterol absorption efficiency among inbred mouse strains. We found that there were significant differences in cholesterol absorption efficiency measured by plasma, fecal, and lymphatic methods: <25% in AKR/J, C3H/J, and A/J strains; 25-30% in SJL/J, DBA/2J, BALB/cJ, SWR/J, and SM/J strains; and 31-40% in C57L/J, C57BL/6J, FVB/J, and 129/SvJ strains. In (AKRxC57L)F1 mice, the cholesterol absorption efficiency (31 +/- 6%) mimicked that of the C57L parent (37 +/- 5%) and was significantly higher than in AKR mice (24 +/- 4%). Although biliary bile salt compositions and small intestinal transit times were similar, C57L mice displayed significantly greater bile salt secretion rates and pool sizes than AKR mice. In examining lymphatic cholesterol transport in the setting of a chronic biliary fistula, C57L mice displayed significantly higher cholesterol absorption rates compared with AKR mice. Because biliary and intestinal transit factors were accounted for, we conclude that genetic variations at the enterocyte level determine differences in murine cholesterol absorption efficiency, with high cholesterol absorption likely to be a dominant trait. This study provides baseline information for identifying candidate genes that regulate intestinal cholesterol absorption at the cellular level.  相似文献   

9.
Plasma adiponectin levels are reduced in obese people, and hypoadiponectinemia is recently reported to associate with cholesterol gallstone formation in human. The aim of this study was to examine the role of adiponectin in gallstone formation using adiponectin knockout mice. We analyzed male knockout and C57BL6J mice fed normal or lithogenic diet for 6 weeks. On lithogenic diet, the prevalence rate of gallstone was significantly greater in knockout mice than C57BL6J mice. The molar percentages of β and ω-muricholic acid were significantly higher and hepatic sterol 12α-hydroxylase expression (cyp8b1) was significantly lower in knockout mice than C57BL6J mice fed normal diet. The bile apolipoprotein A-I protein levels were decreased in knockout mice. Histological examination showed gallbladder wall thickening and accumulation of glycoprotein in the gallbladder of knockout mice. Gallbladder phospholipase A2-IVA expression was significantly higher in knockout mice than in C57BL6J mice fed lithogenic diet. Our results indicate that lack of adiponectin promotes gallstone formation in mice.  相似文献   

10.
11.
Restoration of gallstone susceptibility by leptin in C57BL/6J ob/ob mice   总被引:5,自引:0,他引:5  
The absence of leptin due to the ob mutation leads to obesity and confers resistance to diet-induced cholesterol gallstone formation in otherwise susceptible C57BL/6J mice. To investigate contributions of obesity and leptin to gallstone susceptibility, C57BL/6J ob/ob mice were treated daily with i.p. saline or recombinant murine leptin at low (1 microgram/g bw) or high (10 microgram/g bw) doses and were pair-fed a lithogenic diet (15% dairy fat, 1.25% cholesterol, 0.5% cholic acid). Weight loss in ob/ob mice increased in proportion to leptin dose, indicating that the lithogenic diet did not impair leptin sensitivity. In a dose-dependent manner, leptin promoted cholesterol crystallization and gallstone formation, which did not occur in saline-treated mice. Notwithstanding, leptin decreased biliary lipid secretion rates without enriching cholesterol in bile. Leptin did not affect bile salt hydrophobicity, but did increase the biliary content of the most abundant molecular species of phosphatidylcholine, 16:0-18:2. Treatment with leptin down-regulated 3-hydroxy-3-methylglutaryl CoA reductase and prevented cholesterol from accumulating in liver. Consistent with increased hepatic clearance, leptin decreased plasma HDL cholesterol concentrations. This was accommodated in liver without up-regulation of cholesterol 7alpha-hydroxylase or Acat. These data suggest that despite the lithogenic diet, endogenous sources constitute a significant proportion of biliary cholesterol during leptin-induced weight loss. Kinetic factors related to cholesterol nucleation, gallbladder contractility, or mucin secretion may have accounted for leptin-induced gallstone formation.  相似文献   

12.
Sphingomyelinosis (spm), an autosomal recessive mutation in mice originally occurred in the C57BL/KsJ inbred strain. Spm/spm mice of this genetic background show striking hepatosplenomegaly with a marked accumulation of sphingomyelin and cholesterol due to a deficiency of sphingomyelinase. However, in spm/spm mice of C57BL/6J and DBA/2J backgrounds, hepatosplenomegaly was not pronounced in spite of marked elevation of hepatic lipid concentrations. The lifespan of C57BL/6J-spm/spm and DBA/2J-spm/spm mice was shorter than that of C57BL/KsJ-spm/spm mice. This appeared to be associated with the comparatively rapid rise in hepatic lipid concentrations, which in turn might be related to the absence of hepatomegaly. Histological study revealed the formation of massive foam cell clusters in the livers and spleens of C57BL/KsJ-spm/spm mice, whereas in the case of C57BL/6J-spm/spm and DBA/2J-spm/spm mice, diffusely scattered foam cells were found. These findings suggest that the functions of reticuloendothelial system (RES) play a crucial role in the development of hepatosplenomegaly in response to lipid accumulation.  相似文献   

13.
Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [(3)H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM.  相似文献   

14.
Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats.  相似文献   

15.
BackgroundIt has been demonstrated in animal studies that both polyphenol-rich pomegranate extract (PomX) and the polysaccharide inulin, ameliorate metabolic changes induced by a high-fat diet, but little is known about the specific mechanisms.ObjectiveThis study evaluated the effect of PomX (0.25%) and inulin (9%) alone or in combination on cholesterol and lipid metabolism in mice.MethodsMale C57BL/6 J mice were fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets supplemented with PomX (0.25%) and inulin (9%) alone or in combination for 4 weeks. At the end of intervention, serum and hepatic cholesterol, triglyceride levels, hepatic gene expression of key regulators of cholesterol and lipid metabolism as well as fecal cholesterol and bile acid excretion were determined.ResultsDietary supplementation of the HF/HS diet with PomX and inulin decreased hepatic and serum total cholesterol. Supplementation with PomX and inulin together resulted in lower hepatic and serum total cholesterol compared to individual treatments. Compared to HF/HS control, PomX increased gene expression of Cyp7a1 and Cyp7b1, key regulators of bile acid synthesis pathways. Inulin decreased gene expression of key regulators of cholesterol de novo synthesis Srebf2 and Hmgcr and significantly increased fecal elimination of total bile acids and neutral sterols. Only PomX in combination with inulin reduced liver and lipid weight significantly compared to the HF/HS control group. PomX showed a trend to decrease liver triglyceride (TG) levels, while inulin or PomX-inulin combination had no effect on either serum or liver TG levels.ConclusionDietary PomX and inulin supplementation decreased hepatic and serum total cholesterol by different mechanisms and the combination leading to a significant enhancement of the cholesterol-lowering effect.  相似文献   

16.
The intestinal mast cell response and lymphoblast activity, as measured by the incorporation of 3H-thymidine into mesenteric lymph node cells (MLN) of WBB6F1-w/wv(w/wv) mice, their normal congenic littermates (+/+) and C57BL/6J mice, were compared after infection with Trichinella spiralis. Marked and similar blast cell activity and an increase in number of cells were observed in the MLN of infected w/wv and C57BL/6J mice 7 and 15 days P.I. In contrast to C57BL/6J mice, primary T. spiralis intestinal infections were prolonged in w/wv mice and more muscle larvae were recovered from w/wv mice 29 days post-infection. In C57BL/6J mice mucosal mast cell (MMC) numbers increased on day 7 P.I. whereas in w/wv mice these cells did not increase significantly until day 15 post-infection, reaching a peak on day 22. In w/wv mice, the response to secondary infection as determined by an accelerated expulsion of adult worms did not occur until day 11 postchallenge whereas in +/+ and C57BL/6J mice worm expulsion was nearly complete at that time. In both primary and secondary infections, the MMC numbers in w/wv mice were significantly lower than in C57BL/6J or +/+ mice. The results suggest that prolongation of T. spiralis infection in w/wv mice is associated with delayed appearance of mast cells in the intestinal mucosa which may reflect slow generation of the intestinal inflammatory response.  相似文献   

17.
Brain tissue from adult male and female mice of the C57BL/6J, C57BL/6J-Aw—J, BALB/cJ, SJL/J, and DBA/2J genotypes was examined for brain weight, total protein, total lipid, cholesterol, phospholipid, plasmalogen, sulfatide, nonganglioside—glycolipid sphingosine, and ganglioside N-acetyl neuraminic acid, fatty acid, and sphingosine. No significant differences were found between sexes for any of these constituents. When compared to the overall average obtained for other animals, the DBA/2J, C57BL/6J-Aw−J, and BALB/cJ mice contained lower quantities of nonganglioside—glycolipid sphingosine. The DBA/2J and C57BL/6J-Aw−J mice also contained lower quantities of plasmalogen and sulfatide compared to the overall averages obtained for the other genotypes. In addition, the sterol content in DBA/2J mice was significantly higher than the overall average value obtained for the other animals.  相似文献   

18.
Pulmonary and hepatic levels of aryl hydrocarbon hydroxylase (AHH) were studied in inbred strains of mice following intratracheal (i.t.) instillation of 3-methylcholanthrene (MCA). I.t. instillation of 188 mug MCA in sterile 0.2% gelatin in saline resulted in preferential induction of pulmonary AHH. After treatment with this dose of MCA, the pulmonary AHH levels of strains C57BL/6Cum, C57BL/6J, BALB/cMai, C3H/fMai, and C57L/J were observed to be induced within 24 h after treatment. Strains DBA/2Cum, AKR/J, SJL/J, DBA/2J and RF/J expressed no such increase. At a dose of 500 mug MCA, the pulmonary tissue of DBA/2 mice did express a 4-fold increase. This increase in AHH was determined to be quite different from the increase observed in C57BL/6 mice by: (1) specific activity of the enzymes, (2) genetic regulation, (3) susceptibility to inhibition by 7,8-benzoflavone, and (4) spectral properties of the associated cytochromes. It was of major importance that induction of pulmonary AHH was observed to be regulated by a single dominant gene in crosses involving the C57BL/6Cum and DBA/2Cum strains of mice. Results were discussed with the view in mind that these genetically regulated levels of AHH may play a role in susceptibility to cancers induced by polycyclic aromatic hydrocarbon carcinogens.  相似文献   

19.
20.
Although most studies have focused on the cholesterol-lowering activity of phytosterols, other biological actions have been ascribed to these plant sterol compounds, one of which is a potential immune modulatory effect. To gain insight into this issue, we used a mouse model of acute, aseptic inflammation induced by a single subcutaneous turpentine injection. Hypercholesterolemic apolipoprotein E-deficient (apoE(-/-)) mice, fed with or without a 2% phytosterol supplement, were treated with turpentine or saline and euthanized 48 h later. No differences were observed in spleen lymphocyte subsets between phytosterol- and control-fed apoE(-/-) mice. However, cultured spleen lymphocytes of apoE(-/-) mice fed with phytosterols and treated with turpentine showed increased IL-2 and IFN-gamma secretion (T-helper type1, Th1 lymphocyte cytokines) compared with turpentine-treated, control-fed animals. In contrast, there was no change in Th2 cytokines IL-4 and IL-10. Phytosterols also inhibit intestinal cholesterol absorption in wild-type C57BL/6J mice but, in this case, without decreasing plasma cholesterol. Spleen lymphocytes of turpentine-treated C57BL/6J mice fed with phytosterols also showed increased IL-2 production, but IFN-gamma, IL-4 and IL-10 production was unchanged. The Th1/Th2 ratio was significantly increased both in phytosterol-fed apoE(-/-) and C57BL/6J mice. We conclude that phytosterols modulate the T-helper immune response in vivo, in part independently of their hypocholesterolemic effect in a setting of acute, aseptic inflammation. Further study of phytosterol effects on immune-based diseases characterized by an exacerbated Th2 response is thus of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号