首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
泛素化是一种存在于真核生物内的蛋白质翻译后修饰,介导了蛋白质的特异性降解与信号转导,参与了诸多生命过程的调控进而影响着机体方方面面的功能。泛素化网络的紊乱和失衡是导致人类严重疾病的重要原因。泛素分子可以形成8种不同拓扑结构的同质泛素链,其丰度和功能差别巨大。目前,丰度较高的K48及K63经典泛素链的修饰底物较多、功能研究相对充分,而其他非典型泛素链的含量低、研究相对较少,但是诸多证据表明非典型泛素链在细胞内发挥着重要的调节功能。K6泛素链是一种重要的非典型泛素链,与K48链相似,具有紧密的空间结构。目前研究发现K6泛素链在DNA损伤修复、线粒体质量控制等过程中发挥重要调节功能,在肿瘤发生、发展以及帕金森疾病的致病过程中有着重要的作用。目前,由于缺乏特异性的K6泛素链抗体和有效的富集手段,导致K6泛素链修饰的底物、调控机制研究相对较少,诸多调控过程和功能有待进一步深入研究。本文系统综述了K6非典型泛素链的结构特征、调控机制以及相关的生物学功能与疾病,为K6泛素链的功能研究提供参考。  相似文献   

2.
何珊  张令强 《遗传》2015,37(9):911-917
蛋白质泛素化修饰过程在调节各种细胞生物学功能的过程中发挥了非常重要的作用,如细胞周期进程、DNA损伤修复、信号转导和各种蛋白质膜定位等。泛素化修饰可分为多聚泛素化修饰和单泛素化修饰。多聚泛素化修饰系统可以通过对底物连接不同类型的多泛素化链调节蛋白质的功能。多聚泛素化修饰中已知7种泛素链连接方式均为泛素内赖氨酸连接方式。近几年发现了第8种类型的泛素链连接形式即线性泛素化,其泛素链的连接方式是由泛素甲硫氨酸的氨基基团与另一泛素甘氨酸的羧基基团相连形成泛素链标记。目前研究表明线性泛素化修饰在先天性免疫和炎症反应等多个过程中发挥着非常重要的作用。募集线性泛素链的泛素连接酶E3被称为LUBAC复合体,其组成底物以及其活性调控机制和功能所知甚少。本文综述了募集线性泛素化链的泛素连接酶、去泛素化酶、底物等活性调控机制及其在先天性免疫等多个领域中的功能,分析了后续研究方向,以期为相关研究提供参考。  相似文献   

3.
泛素化是一种动态可逆的蛋白质翻译后修饰,泛素分子在泛素激活酶、泛素结合酶和泛素连接酶的级联酶促反应催化下共价连接到底物蛋白上。去泛素化酶将泛素分子从底物上移除,动态可逆地调控泛素化修饰,在成熟泛素的生成、泛素链的移除与修剪、游离泛素链的回收等过程中发挥着关键的调控作用。本文的研究对象是酵母中泛素特异性蛋白酶(ubiquitin specific protease, USP)家族成员Ubp14,负责回收细胞内游离的泛素链。本研究定量比较了酵母细胞中Ubp14缺失对全蛋白质组的影响,进而找出其潜在的调控通路和分子功能。首先,通过同源重组技术构建了ubp14?菌株,发现其生长速度低于野生型酵母。利用稳定同位素氨基酸代谢标记技术结合深度覆盖的蛋白质组学分析技术,系统比较了ubp14?菌株相对于野生型菌株的差异蛋白,共计鉴定3 685个蛋白,通过统计学分析筛选得到109个差异蛋白。基因本体论分析发现,Ubp14缺失引起的差异蛋白主要参与了包括氨基酸代谢、氧化还原和热应激等生物学过程。本研究为深入探究去泛素化酶Ubp14的生物学功能,进而深刻理解游离泛素的稳态平衡与生物学过程调控提供了高可信的蛋白...  相似文献   

4.
解密泛素链的亲和工具   总被引:1,自引:0,他引:1  
泛素化是最具多样性的蛋白质翻译后修饰之一,广泛参与蛋白质降解、细胞信号转导、DNA损伤修复等重要的生物学过程.其中,泛素的8个位点(M1、K6、K11、K27、K29、K33、K48、K63)都可以与另一个泛素分子的C末端结合,形成结构复杂的泛素链.不同结构泛素链的功能不同.由于缺乏检测泛素链的特异性工具,许多类型泛素链的功能尚未清楚.已开发的泛素连接特异性抗体等亲和试剂为研究泛素链提供了重要的分析工具.本文综述了目前已报道的几种泛素连接特异性抗体的开发以及应用,同时总结了其他可分析泛素链的特异性亲和工具,例如Affimer、基于UBD的荧光传感蛋白等.同时,本文还对开发泛素连接特异性抗体所需抗原的获得方法进行了简单的介绍.  相似文献   

5.
泛素化是真核细胞中重要的蛋白质翻译后修饰过程,通过靶向蛋白质降解或其他信号途径参与多种细胞功能.底物蛋白的多聚泛素化修饰是一个持续的过程,其中不仅涉及复杂泛素系统相关酶的参与,而且存在更为复杂的结构上相互作用与泛素链组装机理.不同的泛素链修饰决定了底物蛋白下游的不同命运,泛素结合酶E2在泛素链形成中的重要作用受到越来越多的关注.对泛素链形成机理的深入研究与认识有利于发现与泛素系统相关的疾病靶点和利用泛素化调控方法进行治疗.本综述总结了E2和E3如何决定不同泛素链形成的机制和相关的结构信息,以及两种不同的泛素链组装机制.  相似文献   

6.
泛素、泛素链和蛋白质泛素化研究进展   总被引:4,自引:1,他引:4  
蛋白质泛素化是以泛素单体和泛素链作为信号分子,共价修饰细胞内其他蛋白质的一种翻译后修饰形式。不同蛋白质底物、同一底物的不同氨基酸修饰位点以及同一位点上泛素链连接方式的不同均可导致细胞效应的差异。蛋白质泛素化在真核细胞内广泛存在,除了介导蛋白质的26S蛋白酶体降解途径之外,还广泛参与了基因转录、蛋白质翻译、信号传导、细胞周期控制以及生长发育等几乎所有的生命活动过程。泛素链的形成及其修饰过程的任何失调均可导致生物体内环境的紊乱,从而产生严重的疾病。文中结合实验室研究,综述了泛素的发现历史、基因特点、晶体结构,特别是泛素链的组装过程、结构、功能以及与人类相关疾病关系的新进展,可为这些疾病的治疗靶点和药物靶标的研究提供思路。  相似文献   

7.
中脑黑质多巴胺能神经元特异性损伤和α突触核蛋白聚集的分子机制是帕金森病(Parkinson’s disease,PD)研究领域亟待解决的问题。蛋白质异常聚集很大程度上是由于泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)功能障碍引起的。蛋白质泛素化由一系列泛素化酶级联反应促进,并受去泛素化酶(deubiquitylases,DUBs)的反向调节。泛素化和去泛素化过程异常导致蛋白质异常聚集和包涵体形成,进而损伤神经元。近来研究报道,蛋白质的泛素化和去泛素化修饰在PD的发病机制中发挥重要作用。E3泛素连接酶促进蛋白质的泛素化,有利于α突触核蛋白的清除、促进多巴胺能神经元的存活、维持线粒体的功能等。DUBs可以去掉底物蛋白质的泛素化修饰,抑制α突触核蛋白的降解,调控线粒体的功能和神经元内铁的稳态。本文以E3泛素连接酶和DUBs为切入点,综述了蛋白质泛素化和去泛素化修饰参与多巴胺能神经元损伤机制的最新研究进展。  相似文献   

8.
《生物化学与生物物理进展》拟于2023年1月出版泛素化研究专刊,诚邀海内外科研工作者来稿。生物大分子的共价修饰与生物大分子动态调控和细胞命运决定、机体组织稳态维持关系密切。在众多类型的蛋白质翻译后修饰中,泛素化修饰被广为关注。根据与底物结合的泛素分子的数量和拓扑结构,泛素化可分为单泛素化和多聚泛素化。  相似文献   

9.
泛素化修饰是蛋白质的一种重要的翻译后水平修饰,而且有着多种不同的生物学功能,对蛋白质的结构与功能、基因表达调控以及蛋白质-蛋白质/其它分子相互作用等多个方面有着重要的调控作用。Rad6即是酵母中的一种重要的泛素载体蛋白。Rad6通过泛素化修饰多种靶蛋白在DNA的损伤修复中发挥着重要作用。文章重点讨论了Rad6在DNA损伤修复方面的功能以及在正常情况下对染色质结构和基因表达调控的影响。  相似文献   

10.
泛素是一种包含76个氨基酸的小分子蛋白。泛素共价结合到底物的过程称为泛素化修饰。泛素化修饰过程是一个由级联的泛素激活酶、泛素结合酶和泛素连接酶所介导的复杂过程,泛素化修饰具有高效、ATP依赖、高度特异的特点。泛素化修饰与细胞周期调控、细胞凋亡、转录调控、DNA损伤修复等一系列生物学过程密切相关。在泛素化修饰过程中,泛素连接酶对底物的识别,是决定泛素化修饰特异性的关键环节。泛素连接酶底物识别的相关机制研究不断被报道,鉴定泛素连接酶底物的高通量方法也在不断的改进和发展。随着实验研究的不断深入,实验数据的不断产出,利用生物信息学进行泛素连接酶底物的研究也开始受到关注。对泛素连接酶识别底物的相关机制、高通量泛素连接酶底物的鉴定方法、泛素连接酶底物的生物信息学研究和生物信息学在泛素连接酶底物研究中的发展方向进行讨论。  相似文献   

11.
目的 为了制备不同链种类、不同链长及磷酸化修饰的泛素样品。方法 本文主要以生物酶法为手段对以上样品的制备路线进行阐述。制备的主要方法分为两种,一是采用逐次添加的方式达到泛素链延长的目的,二是通过一次酶反应制备混合的多聚泛素链,然后对不同链长的泛素链进行纯化分离。结果 以上两种策略都能达到制备多聚泛素链的目的。进一步,通过对泛素进行磷酸化修饰,制备了磷酸化的泛素样品。通过K11和K48的泛素酶制备了K11/K48分支链泛素。结论 基于以上泛素链的制备路线,可以进一步对不同链接形式的不同亚基进行磷酸化修饰等翻译后修饰,也可以通过在特定亚基进行同位素标记及在特定位点引入小分子探针,进而进行NMR和FRET的测定。综上所述,本方法将为从事泛素信号通路和泛素生化研究的科学家提供借鉴和帮助。  相似文献   

12.
A balance between the synthesis and degradation of active proteins governs diverse cellular processes in plants, spanning from cell‐cycle progression and circadian rhythm to the outcome of several hormone signalling pathways. Ubiquitin‐mediated post‐translational modification determines the degradative fate of the target proteins, thereby altering the output of cellular processes. An equally important, and perhaps under‐appreciated, aspect of this pathway is the antagonistic process of de‐ubiquitination. De‐ubiquitinases (DUBs), a group of processing enzymes, play an important role in maintaining cellular ubiquitin homeostasis by hydrolyzing ubiquitin poly‐proteins and free poly‐ubiquitin chains into mono‐ubiquitin. Further, DUBs rescue the cellular proteins from 26S proteasome‐mediated degradation to their active form by cleaving the poly‐ubiquitin chain from the target protein. Any perturbation in DUB activity is likely to affect proteostasis and downstream cellular processes. This review illustrates recent findings on the biological significance and mechanisms of action of the DUBs in Arabidopsis thaliana, with an emphasis on ubiquitin‐specific proteases (UBPs), the largest family among the DUBs. We focus on the putative roles of various protein–protein interaction interfaces in DUBs and their generalized function in ubiquitin recycling, along with their pre‐eminent role in plant development.  相似文献   

13.
The ubiquitin‐conjugation system regulates a vast range of biological phenomena by affecting protein function mostly through polyubiquitin conjugation. The type of polyubiquitin chain that is generated seems to determine how conjugated proteins are regulated, as they are recognized specifically by proteins that contain chain‐specific ubiquitin‐binding motifs. An enzyme complex that catalyses the formation of newly described linear polyubiquitin chains—known as linear ubiquitin chain‐assembly complex (LUBAC)—has recently been characterized, as has a particular ubiquitin‐binding domain that specifically recognizes linear chains. Both have been shown to have crucial roles in the canonical nuclear factor‐κB (NF‐κB)‐activation pathway. The ubiquitin system is intimately involved in regulating the NF‐κB pathway, and the regulatory roles of K63‐linked chains have been studied extensively. However, the role of linear chains in this process is only now emerging. This article discusses the possible mechanisms underlying linear polyubiquitin‐mediated activation of NF‐κB, and the different roles that K63‐linked and linear chains have in NF‐κB activation. Future directions for linear polyubiquitin research are also discussed.  相似文献   

14.
泛素化是存在于真核生物中一种重要的翻译后修饰过程,参与调控包括蛋白质降解在内的多种生命活动。实现这一调控过程需要将一个由76个氨基酸组成的泛素蛋白共价连接到底物蛋白上。同时,泛素本身也存在多种翻译后修饰,包括泛素化、磷酸化、乙酰化等,进一步丰富了泛素的修饰类型,决定了底物蛋白不同的命运。近年来,伴随着第65位丝氨酸磷酸化泛素蛋白参与调控线粒体自噬这一突破性进展,泛素蛋白其余磷酸化位点的功能研究也获得越来越多的关注。本文根据目前已有的国内外研究和报道,总结了泛素蛋白已知的磷酸化修饰位点,梳理了泛素蛋白第12位和66位苏氨酸、第57位和65位丝氨酸等位点的磷酸化修饰对其生物物理特性带来的改变,并对相应修饰位点所涉及的生物学功能调控进行了综述。  相似文献   

15.
Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B—which we identify as an endogenous substrate of acetylated ubiquitin—and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号