首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The morphological substrate of putative serotonin (5-HT)/neuropeptide Y (NPY) interactions in thé suprachiasmatic nucleus (SCN) was investigated by combined radioautography and immunocytochemistry after intraventricular administration of (3H)5-HT in the rat. In the ventral portion of the SCN, the distribution of (3H)5-HT uptake sites overlapped closely the NPY-immunoreactive terminals. Previous investigations have shown that the dense 5-HT and NPY innervations of the SCN originate in different structures, i.e., the midbrain raphe nuclei and the ventral lateral geniculate nucleus, respectively. Accordingly, in the present study, destruction of 5-HT afferents by 5,7-dihydroxytryptamine was not found to induce any modification in NPY staining and, in ultrastructural immuno-radioautographic preparations, two distinct pools of axonal varicosities could be identified. Both 5-HT and NPY terminals established morphologically defined synaptic junctions, sometimes on the same neuronal target. Some cases of direct axo-axonic appositions between the two types of terminals were also encountered. These data constitute additional criteria for characterizing the cytological basis of the multiple transmitter interactions presumably involved in the function of the SCN as a central regulator of circadian biological rhythms.  相似文献   

2.
The synaptic apparatus in the ventral nucleus of the medial geniculate body (MGBv) of the cat was examined using electron microscopy and stereological methods, which made it possible to measure the synaptic density. Within 7015 µm2 of examined sections, 1586 presynaptic terminal (PST) profiles were found, which corresponds to 226.0·103 PST per 1 mm2 of section surface. The PSP were classified into five groups:RL,RS,F,P, andUT, in accordance with their ultrastructural pattern (dimension of PST profile, dimension and shape of synaptic vesicles, and type of synaptic contact, SC) [18–22]. On the above surface, there were 1012 SC formed by PST of different groups, which corresponds to 144.0·103 SC per 1 mm2 of section surface. TheRL-,RS-,F-,P-, andUT-type PST formed 14.8%, 50.1%, 13.1%, 16.8%, and 5.2% of analyzed SC, respectively. The calculated mean SC numerical density equalled (260.8±54.8)·106 SC per 1 mm3 of fixed MGBv tissue. Among them, 40.2·106 (15.4%) belonged toRL-PST, i.e., to axonal terminals of thecolliculus inferior neurons; 130.2·106 (49.9%) toRS-PST, i.e., mostly to axonal terminals of the auditory cortex neurons; and 33.9·106 (13.0%) toF-PST, i.e., to axons of the GABA-ergic interneurons and neurons of the perigeniculate division of the reticular thalamic nucleus. Group-P PST, i.e., terminal structures of the dendritic arborizations of interneurons, formed 42.7·106 (16.4%) SC per 1 mm3, and 13.8·106 (5.3%) SC belonged toUT-PST, i.e., to terminals of unidentified nature. Among 260.8·106 SC in 1 mm3 of tissue, only 23.8·106 (9% of total number)RL-SC, localized on the relay neurons, are directly involved in the MGBv relay function. All other SC transmit control influences from various structures of the nervous system, and provide adjustment of relay function to the constantly changing environmental conditions and varying status of an orgamism. The mean number of SC, localized on an averaged MGBv relay neuron, was calculated as 9100. Among them, about 1200 SC belong toRL-PST, 5200 SC toRS-PST, 1200 SC toF-PST, 1100 SC toP-PST, and 400 SC toUT-PST.Neirofiziologiya/Neurophysiology, Vol. 27, No. 3, pp. 208–219, May–June, 1995.  相似文献   

3.
Summary The distribution of (125I) alpha bungarotoxin (-BTX) binding sites in the suprachiasmatic nucleus (SCN) of the adult female rat was examined by electron-microscopic autoradiography. The ultrastructural distribution of silver grains was analysed by line source, direct point count, and 50% probability circle methods. Real grain distribution was significantly different from that of randomly generated hypothetical grains. Line source analysis demonstrated two populations of sources: one associated with membranes, and one inside neuronal structures. Probability circle analysis of shared grains indicated that membrane-bound-radioactive sources were mainly asssociated with axo-dendritic appositions. Only a small proportion of labeled neuronal interfaces exhibited synaptic differentiations in the plane of section. However, the compartment containing synaptic terminals was the most enriched when comparing real to hypothetical grains. Probability circle analysis of exclusive grains demonstrated that sources that were not associated with neuronal plasma membranes were likely to be within nerve cell bodies and dendrites. It is concluded that the majority of specifically labeled -BTX binding sites in the SCN is membrane bound, and may be associated with axodendritic synaptic transmission. The presence of a significant proportion of the label in the soma and dendrites of suprachiasmatic neurons 24 h after ventricular infusion suggests that some of the labeled binding sites (junctional or nonjunctional) may be internalized within these two compartments.  相似文献   

4.
Hypertensive rats with multiple extra copies of the renin gene (TGR) exert an inverted circadian blood pressure (BP) profile. We investigated whether circadian oscillations in the hypothalamic suprachiasmatic nucleus (SCN), a main circadian oscillator, and the paraventricular nucleus (PVN), involved in BP control, are influenced in TGR rats. The expression of the clock gene per1, a marker of circadian timing, was measured in the SCN and PVN. Moreover, the expression of genes encoding vasopressin (AVP), vasoactive intestinal peptide (VIP) in the SCN, and AVP and oxytocin (OXT) in the PVN were studied by in situ hybridization. Expression of the per1 gene showed a distinct circadian rhythm in both the SCN and PVN with no differences observed between the TGR and control Sprague–Dawley (SD) rats. The expression of avp in the SCN was rhythmic in both strains and moderately higher in TGR than in SD rats while no significant changes were found in the PVN. The expression of vip in the SCN and oxt in the PVN did not differ between both strains. Our results may indicate that changes occurring downstream to the SCN are responsible for the development of the inverted BP rhythm in TGR hypertensive rats.  相似文献   

5.
Heterotrophic bacterial biomass and growth rates were examined in stromatolites formed from four different types of benthic cyanobacterial mats. Bacteria in algal mats were counted using direct microscopy and biomass was estimated from the numbers of bacteria. Heterotrophic bacterial growth rates were estimated from the rate of incorporation of tritiated thy‐midine into DNA. Pustular mat, which occurs in the upper in‐tertidal zone, contained relatively few bacteria in the surface layers (0–5 mm), having about 0.2 x 106 cells mm‐3, or 20 mgC m‐2 per millimetre depth. Other mats in the lower intertidal and subtidal zones had from 1 x 106 cells mm‐3 to 8 x 106 cells mm‐3. Heterotrophic bacterial productivities were 2.1 to 5.0 mgC m‐2 h‐1. Turnover times were an average of 1 day in the sandy sediment and 5 days in the colloform mat. Although these results are minimum estimates, they indicate that heterotrophic bacteria contribute substantially to the carbon cycle in stromatolites, by utilizing about 20 to 30% of primary production.  相似文献   

6.
It has been previously shown that withdrawal from alcohol decreases the synthesis and expression of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) in the suprachiasmatic nucleus (SCN), and that the infusion of NGF over 1 month completely restores these changes. Because SCN neurons do not express TrkA, NGF might have exerted its effects either through direct signalling of the neurons via p75NTR or by enhancing the activity of the cholinergic afferents to the SCN, which arise from the nucleus basalis magnocellularis (NBM). The observation that the infusion of NT-3 to withdrawn rats does not elicit any change in neuropeptide expression in the SCN suggests that ACh might be implicated in this process, a hypothesis that we have attempted to clarify in this study. For this purpose we destroyed, with quinolinic acid, the NBM of rats withdrawn from ethanol and later infused them with NGF over a period of 13 days. The total number and the somatic volume of SCN neurons immunoreactive for VP and VIP were stereologically estimated. No differences were found in the total number of neurons between quinolinic-injected NGF-treated withdrawn animals and intact withdrawn rats. However, the somatic volume of SCN neurons from quinolinic-injected animals was significantly reduced relative to control and withdrawn rats. The present results unequivocally demonstrate that the trophic effects exerted by NGF upon SCN neurons do not depend on direct neuronal signalling. Instead, they are indirect and, according to our results, NBM neurons, whose axons give rise to a cholinergic projection to the SCN, seem to be essential for eliciting those effects.  相似文献   

7.
Electron microscope research was conducted on the synaptic apparatus of the feline primary auditory cortex (Al). A total of 2096 profiles of axonal terminals (AT) were found over a total area of 8230 µm2 of ultrathin slices at different layers of this cortical layer — an average of 255 profiles per 1000 µm2 of the surface area on these slices. The AT profiles occupied about 8.9% of the surface of these cross-sections. It was found that 52% of the AT containing synaptic vesicles formed asymmetrical or symmetrical synaptic contacts (83.9% and 16.1% respectively) and that AT had no contacts which could be considered synaptic junctions on 48% of slices. It was also observed that 45.3% of the AT forming contacts synapsed on spines, 48.5% on dendrites, and 6.2% on neuronal somata. Finally, 95.4% and 4.6% of axo-spinal synapses contained rounded and flattened vesicles respectively; equivalent figures for axodendritic synapses were 79.4% and 20.6% respectively and 19.8 and 80.2% for axosomatic synapses. Calculations revealed an average of 322.8 × 106 AT over 1 mm3 of cat auditory cortex. Organizational aspects of synaptic apparatus at different layers of area A1 were ascertained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 533–543, July–August, 1990.  相似文献   

8.
S Sugita  K Ohsawa 《Jikken dobutsu》1992,41(4):437-442
Morphometric and immunohistochemical analyses of the suprachiasmatic nucleus (SCN) were performed on hereditary microphthalmic rats. In normal rats, the number of cells and the volume of the SCN were 11, 631 and 6.7 x 10(-2) mm3 (an average taken from 12 SCNs). However, the neuronal population and volume of the SCN in hereditary microphthalmic rats were 7,450 and 4.5 x 10(-2) mm3 (an average taken from 14 SCNs), respectively. There were no significant differences in the size of neurons between normal and microphthalmic SCN neurons. Immunohistochemical studies showed that a considerable number of antivasopressin positive neurons were present in microphthalmic rats, despite their lack of the optic nerve. However, further detailed studies revealed that the number of antivasopressin positive neurons present in microphthalmic rats was only 68% of those found in normal rats. These findings suggest that the complete development of the SCN and vasopressin neurons depends on the visual input.  相似文献   

9.
In vitro adherence of the nosocomial pathogensPseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Serratia marcescens, andCandida albicans to select radiopaque silicone compounds was lower than that observed for the base silicone (p<0.03). Except forE. coli ATCC 11775 andCandida albicans, all microorganisms showed significantly lower adherence to a silicone compound impregnated with tantalum in comparison with a silicone compound impregnated with barium sulfate (p<0.05). Surface hydrophobicity of the silicone compounds did not show a direct correlation with the concentration of radiopacity additives or with degree of bacterial adherence. Scatchard analyses of data indicated that the number of adherence sites forP. aeruginosa on the base silicone, BaSO4-silicone, and Ta-silicone were 9.2×106 per mm2, 6.1×106 per mm2, and 3.7×106 per mm2 respectively. As determined by the Langmuir adsorption isotherm, the dissociation constants for adheredP. aeruginosa to the base silicone, BaSO4-silicone, and Ta-silicone were 2.50×103 mm4, 1.45×103 mm4, and 6.27×103 mm4 respectively.Pseudomonas aeruginosa demonstrated first order kinetics of adherence to the silicone compounds with a half saturation time of 4.15 h for the base silicone, 1.06 h for the BaSO4-silicone, and 2.14 h for the Ta-silicone. The use of Ta-silicone stents may delay the development of ascending urinary tract infections.  相似文献   

10.
Simultaneous electrophysiological and fluorescent imaging recording methods were used to study the role of changes of membrane potential or current in regulating the intracellular calcium concentration. Changing environmental conditions, such as the light-dark cycle, can modify neuronal and neural network activity and the expression of a family of circadian clock genes within the suprachiasmatic nucleus (SCN), the location of the master circadian clock in the mammalian brain. Excitatory synaptic transmission leads to an increase in the postsynaptic Ca2+ concentration that is believed to activate the signaling pathways that shifts the rhythmic expression of circadian clock genes. Hypothalamic slices containing the SCN were patch clamped using microelectrodes filled with an internal solution containing the calcium indicator bis-fura-2. After a seal was formed between the microelectrode and the SCN neuronal membrane, the membrane was ruptured using gentle suction and the calcium probe diffused into the neuron filling both the soma and dendrites. Quantitative ratiometric measurements of the intracellular calcium concentration were recorded simultaneously with membrane potential or current. Using these methods it is possible to study the role of changes of the intracellular calcium concentration produced by synaptic activity and action potential firing of individual neurons. In this presentation we demonstrate the methods to simultaneously record electrophysiological activity along with intracellular calcium from individual SCN neurons maintained in brain slices.  相似文献   

11.
A rapid quantitation of proteoglycan synthesis distribution in intervertebral disc and endplates is described. Tissue blocks of disc (C7-Th1) in the midsagittal plane from ten female beagles were incubated in the presence of 35SO4 and prepared as histological slides. For comparison, sulphate incorporation rates in the C5–C6 discs were assayed by liquid scintillation. Autoradiographic film exposed against the labelled sections was developed and digitized for image analysis using a 256 grey level flat bed table scanner connected to a microcomputer. The film density versus dpm (disintegrations per minute) calibration was performed using a set of 35SO4-labelled glycosaminoglycan standards applied on the same film. Since section thickness, dpm calibration of the film density and the specific activity of sulphate in the medium were known, the incorporations per tissue volume could be calculated. The average incorporation rates of the anterior and posterior annulus fibrosus, nucleus pulposus and vertebral endplates were 5.2±0.9, 5.2±0.8, 4.5±0.6 and 4.1±0.8 pmol/mm3 per h (±SE, n=10), respectively and closely corresponded to those obtained by liquid scintillation. This method offers a convenient and reproducible way to measure the rate of proteoglycan synthesis in large tissue sections but also in thin cartilaginous tissues such as the vertebral endplate.  相似文献   

12.
The suprachiasmatic nucleus (SCN) is known to be the master biological clock in mammals. Despite the periodic mean firing rate, interspike interval (ISI) patterns of SCN neurons are quite complex and irregular. The aim of the present study was to investigate the existence of nonlinear determinism in the complex ISI patterns of SCN neurons. ISI sequences were recorded from 173 neurons in rat hypothalamic slice preparations using a cell-attached patch recording technique. Their correlation dimensions (D2) were estimated, and were then compared with those of the randomly-shuffled surrogate data. We found that only 16 neurons (16/173) exhibited deterministic ISI patterns of spikes. In addition, clustering analysis revealed that SCN neurons could be divided into two subgroups of neurons each having distinct values of coefficient of variation (CV) and skewness (SK). Interestingly, most deterministic SCN neurons (14/16) belonged to the group of irregularly spiking neurons having large CV and SK values. To see if the neuronal coupling mediated by the γ-aminobutyric acid (GABA), the major neurotransmitter in the SCN, contributed to the deterministic nature, we examined the effect of the GABAA receptor antagonist bicuculline on D2 values of 56 SCN neurons. 8 SCN neurons which were originally stochastic became to exhibit deterministic characteristics after the bicuculline application. This result suggests that the deterministic nature of the SCN neurons arises not from GABAergic synaptic interactions, but likely from properties inherent to neurons themselves.Action Editor: Barry J. Richmond  相似文献   

13.
The inhalation anesthetic sevoflurane reversibly suppresses Period2 (Per2) mRNA expression in the suprachiasmatic nucleus (SCN). However, a discrepancy exists in phase shifting of the Per2 expression rhythm between sevoflurane application in rats (in vivo application) and explants (ex vivo application). This investigation aimed to resolve this issue. First, tissues from the SCN, choroid plexus in the lateral ventricle (CP-LV), and choroid plexus in the fourth ventricle (CP–4V), which are robust circadian oscillators, and pineal gland (PG) tissue, which is a circadian influencer, were prepared from Per2::dLuc transgenic rats. Significant phase responses of bioluminescence rhythms for different preparation times were monitored in the four tissue explant types. Second, tissue explants were prepared from anesthetized rats immediately after sevoflurane treatment, and bioluminescence rhythms were compared with those from non-anesthetized rats at various preparation times. Regarding bioluminescence rhythm phases, in vivo application of sevoflurane induced phase shifts in CP-LV, CP-4V, and PG explants according to the times that rats were administered anesthesia and the explants were prepared. Phase shifts in these peripheral explants were withdrawn due to the recovery period after the anesthetic treatment, which suggests that peripheral tissues require the assistance of related tissues or organs to correct phase shifts. In contrast, no phase shifts were observed in SCN explants. These results indicated that SCN explants can independently correct bioluminescence rhythm phase. The bioluminescence intensity of explants was also decreased after in vivo sevoflurane application. The suppressive effects on SCN explants were withdrawn due to a recovery day after the anesthetic treatment. In contrast, the suppressive effects on the bioluminescence intensities of CP-LV, CP-4V, and PG explants remained at 30 days after anesthesia administration. These results suggest that anesthetic suppression is imprinted within the peripheral tissues.  相似文献   

14.
Summary The rate of synonymous nucleotide substitution in nuclear genes of higher plants has been estimated. The rate varies among genes by a factor of up to two, in a manner that is not immediately explicable in terms of base composition or codon usage bias. The average rate, in both monocots and dicots, is about four times higher than that in chloroplast genes. This leads to an estimated absolute silent substitution rate of 6 × 10–9 substitutions per site per year that falls within the range of average rates (2–8 × 10–9) seen in different mammalian nuclear genomes.  相似文献   

15.
Summary Pieces of fetal midbrain raphe tissue were transplanted into the third ventricle or the ventral hypothalamic region near the suprachiasmatic nucleus (SCN) of adult host rats that had previously been denervated by treatment with 5,6-dihydroxytryptamine. The ability of grafted serotonin neurons to reinnervate the SCN in the host rats was studied by means of immunohistochemistry 1 and 3 months after transplantation. In both the intraventricular and intraparenchymal transplant experiments, reinnervation by outgrowing serotonin fibers was observed in the hypothalamus of host rats at 1 and 3 months after surgery. At both survival periods, there was no abundant arborization of serotonin fibers in the SCN, while the preoptic and periventricular areas of the host rats displayed a pattern of serotonergic innervation resembling that in normal (untreated) rats. It is suggested that within the SCN the regenerating serotonin fibers may be exposed to an inhibitory environment.  相似文献   

16.
The synaptic apparatus in the dorsal nucleus of the medial geniculate body, MGB(d), of the cat was examined using electron microscopy. Within 2166 µm2 of studied sections obtained from five regions of MGB(d) tissue, 455 presynaptic terminal (PST) profiles were found, which corresponds, on average, to (210.0±28.4) · 103 PST per 1 mm2 of section surface. In accordance with their ultrastructural pattern (dimension of PST profile, shape of synaptic vesicles, SV, pattern of their arrangement within the terminal, and type of synaptic contact, SC), PST were classified into five main groups:RL, RS, F, P, andUT. The relative amount of PST of these groups constituted 8.1% (RL group), 50.5% (RS), 26.0% (F), 9.2% (P), and 6.2% (UT). According to the dimension of profile, number of SV, and pattern of their arrangement within the terminal,RS-PST were additionally divided into four subgroups:RS1, RS2, RS3, andRS4, whileF-PST were divided into three subgroups:F1, F2, andF3. Thus, MGB(d) possesses five various forms of PST with round SV and asymmetric SC, three PST forms with flattened SV and symmetric SC, one with a mixture of flattened and round SV and symmetric SC, and one with round SV and symmetric SC. It can be supposed that the MGB(d) neurons are supplied with afferent inputs from numerous different sources.Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 197–206, July–October, 1996.  相似文献   

17.
18.
Hypertensive TGR(mREN-2)27 rats exerting inverted blood pressure (BP) profile were used to study clock gene expression in structures responsible for BP control. TGR and control Sprague Dawley male rats were synchronized to the light:dark cycle 12:12 with food and water ad libitum. Daily rhythm in per2, bmal1, clock and dbp expression in the suprachiasmatic nucleus (SCN), rostral ventrolateral medulla (RVLM), nucleus of the solitary tract (NTS), heart and kidney was determined in both groups. Sampling occurred in regular 4 h intervals when rats of both strains were 11-weeks-old. Blood pressure and relative heart weight were significantly elevated in TGR rats in comparison with control. Expression of bmal1 and clock was up regulated in SCN of TGR rats but daily rhythm in per2 and dbp expression was similar in both groups. Mesor of per2 expression in RVLM was significantly higher in TGR than in control rats. In NTS of TGR rats expression of per2 was phase delayed by 3.5 h in comparison with control and bmal1 did not exert rhythmic pattern. Our study provided the first evidence about modified function of central and peripheral circadian oscillators in TGR rats at the level of clock gene expression. Expression of clock genes exerted up regulation in SCN and RVLM and down regulation in NTS. Circadian oscillators in selected brain structures were influenced more than oscillators in the heart and kidney by additional renin gene. Interactions of RAS and circadian system probably contribute to the development of inverted BP profile in TGR rats.  相似文献   

19.

Background

Circadian rhythms in spontaneous action potential (AP) firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN). Also reported is the existence of “Ca2+ spikes” (i.e., [Ca2+]c transients having a bandwidth of 10∼100 seconds) in SCN neurons, but it is unclear if these SCN Ca2+ spikes are related to the slow circadian rhythms.

Methodology/Principal Findings

We addressed this issue based on a Ca2+ indicator dye (fluo-4) and a protein Ca2+ sensor (yellow cameleon). Using fluo-4 AM dye, we found spontaneous Ca2+ spikes in 18% of rat SCN cells in acute brain slices, but the Ca2+ spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse) SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca2+ spike was barely observed (<3%). When fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca2+ spikes was increased to 13∼14%.

Conclusions/Significance

Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca2+ spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca2+ spiking activity is caused by the Ca2+ chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca2+]c in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca2+ spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca2+ spikes in the function of SCN.  相似文献   

20.
Circadian (~24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel‐running behavior of EphA4 knockout (EphA4?/?) mice under different light conditions and upon photic resetting, as well as their light‐induced protein response in the SCN. EphA4?/? mice exhibited reduced wheel‐running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4?/? mice exhibited suppressed phase delays of their wheel‐running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light‐induced c‐FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号