首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytogenetic studies have shown that bandicoots (family Peramelidae) eliminate one X chromosome in females and the Y chromosome in males from some somatic tissues at different stages during development. The discovery of a polymorphism for X-linked phosphoglycerate kinase (PGK-1) in a population of Isoodon obesulus from Mount Gambier, South Australia, has allowed us to answer a number of long standing questions relating to the parental source of the eliminated X chromosome, X chromosome inactivation and reactivation in somatic and germ cells of female bandicoots. We have found no evidence of paternal PGK-1 allele expression in a wide range of somatic tissues and cell types from known female heterozygotes. We conclude that paternal X chromosome inactivation occurs in bandicoots as in other marsupial groups and that it is the paternally derived X chromosome that is eliminated from some cell types of females. The absence of PGK-1 paternal activity in somatic cells allowed us to examine the state of X chromosome activity in germ cells. Electrophoresis of germ cells from different aged pouch young heterozygotes showed only maternal allele expression in oogonia whereas an additional paternally derived band was observed in pre-dictyate oocytes. We conclude that reactivation of the inactive X chromosome occurs around the onset of meiosis in female bandicoots. As in other mammals, late replication is a common feature of the Y chromosome in male and the inactive X chromosome in female bandicoots. The basis of sex chromosome loss is still not known; however later timing of DNA synthesis is involved. Our finding that the paternally derived X chromosome is eliminated in females suggests that late DNA replication may provide the imprint for paternal X inactivation and the elimination of sex chromosomes in bandicoots.  相似文献   

2.
Vas (a Drosophila vasa homologue) gene expression pattern in germ cells during oogenesis and spermatogenesis was examined using all genetic females and males of a teleost fish, tilapia. Primordial germ cells (PGC) reach the gonadal anlagen 3 days after hatching (7 days after fertilization), the time when the gonadal anlagen was first formed. Prior to meiosis, no differences in vas RNA are observed in male and female germ cells. In the ovary, vas is expressed strongly in oogonia to diplotene oocytes and becomes localized as patches in auxocytes and then strong signals are uniformly distributed in the cytoplasm of previtellogenic oocytes, followed by a decrease from vitellogenic to postvitellogenic oocytes. In the testis, vas signals are strong in spermatogonia and decrease in early primary spermatocytes. No vas RNA expression is evident in either diplotene primary spermatocytes, secondary spermatocytes, spermatids or spermatozoa. The observed differences in vas RNA expression suggest a differential function of vas in the regulation of meiotic progression of female and male germ cells.  相似文献   

3.
4.
《Epigenetics》2013,8(7):452-456
Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion (~15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, ~80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.  相似文献   

5.
Inactivation of the X chromosome occurs in female somatic cells and in male meiosis. In both cases, the inactive X chromosome undergoes changes in histone modifications including deacetylation of core histone proteins and enrichment with histone H3 lysine 9 (H3-K9) dimethylation. In this study we show that while the inactive X in female somatic cells is largely devoid of H3-K4 dimethylation, the inactive X in male meiosis is enriched with this modification. However, the inactive X chromosome in female somatic cells and the inactive X and Y in male meiosis are devoid of H3-K4 trimethylation. Further, trimethylation of H3-K4 is present at discrete regions along most of the autosomes, while H3-K4 dimethylation shows a more homogenous staining. Also, the Y chromosome is largely devoid of H3-K4 di- and trimethylation in somatic cells of both humans and mice, however, the Y chromosome is enriched with H3-K4 di- but not trimethylation throughout spermatogenesis. Our results provide insights into the differences between female somatic cells and male germ cells in inactivating the X chromosome, and suggest that trimethylation, and not dimethylation, of H3-K4 is a more robust indicator of the active regions of the genome.  相似文献   

6.
Fetal rat oogenesis was examined attempting to test the hypothesis that two functional X chromosomes are required for the onset of meiosis. The presence of a Barr body in germ cells was considered to be evidence for one inactive X chromosome and the detection of leptotene oocytes as the criterion for the establishment of meiotic prophase. It was found that on Day 16 of gestation, 3.9% of the germ cells were leptotene oocytes, but the incidence of Barr body-positive oogonia persisted at 9.9%. On Day 17, the leptotene oocytes had increased to 26.6% and the Barr body-positive oogonia had decreased to 3.5%. It was concluded that X-chromosome reactivation, though occurring at some time during the onset of meiosis, was not the initiating event.  相似文献   

7.
The honeycomb grouper shows protogynous hermaphroditism. The endocrine mechanisms involved in gonadal restructuring throughout protogynous sex change are largely unknown. In the present study, we investigated changes in the gonadal structures and levels of serum sex steroid hormones during female to male sex change in the honeycomb grouper. On the basis of histological changes, entire process of sex change was assigned into four developmental phases: female, early transition (ET), late transition (LT), and male phase. At the female phase, the oocytes of several developmental stages were observed including gonial germ cells in the periphery of ovigerous lamellae. At the beginning of ET phase, perinucleolar and previtellogenic oocytes began degenerating, followed by proliferation of spermatogonia toward the center of lamella. The LT phase was characterized by further degeneration of oocytes and rapid proliferation of spermatogenic germ cells throughout the gonad. At the male phase, no ovarian cells were observed and testis had germ cells undergoing active spermatogenesis. Serum levels of estradiol-17beta (E2) were high in females in the breeding season, but low in the non-breeding female, transitional and male phase, and those of 11-ketotestosterone (11-KT) and testosterone (T) were low in females and gradually increased in the transitional and male phase. The present results suggest that low serum E2 levels and degeneration of oocytes accompanied by concomitant increase in the 11-KT levels and proliferation of spermatogenic germ cells are probably the events mediating protogynous sex change in the honeycomb grouper.  相似文献   

8.
The chronology and dynamics of the female germ cell development, of the mitotic activity of oogonia, and of the chromosome rearrangements at prophase I of meiosis have been quantitatively estimated in 30 cow embryos and foetuses at the age of 1.5 to 9 months. The sexual differentiation of the gonads was shown in a 1.5 month old embryo. The oocytes at the stages of preleptotene chromosome condensation and decondensation occurred in the 1.5 month old embryos and their maximum number was observed in the 2-5 month old foetuses. The leptotene oocytes were found in the 2-2.5 month old foetuses. The transition to zygotene and pachytene was also recorded in the 2-2.5 month old foetuses but their maximum number was observed in the 4-6 month old foetuses; their number was reduced to single oocytes thereafter. The first diplotene oocytes appeared in the 3 month old foetuses but the active transition of the oocytes to diplotene was observed after four months of development. The formation of a layer of follicle cells takes place around the diplotene oocytes. The vast majority of degenerating germ cells are the oocytes in zygotene-pachytene and in diplotene. The population of germ cells is formed by the mitotic division of oogonia in the cow foetuses, mainly at the age of 1.5 to 4 months of development.  相似文献   

9.
Abe M  Tsai SY  Jin SG  Pfeifer GP  Szabó PE 《PloS one》2011,6(8):e23848
Mammalian germ cells undergo global reprogramming of DNA methylation during their development. Global DNA demethylation occurs around the time when the primordial germ cells colonize the embryonic gonads and this coincides with dynamic changes in chromatin composition. Global de novo DNA methylation takes place with remarkably different dynamics between the two sexes, prospermatogonia attaining methylation during fetal stages and oocytes attaining methylation postnatally. Our hypothesis was that dynamic changes in chromatin composition may precede or accompany the wave of global DNA de novo methylation as well. We used immunocytochemistry to measure global DNA methylation and chromatin components in male and female mouse fetal germ cells compared to control somatic cells of the gonad. We found that global DNA methylation levels sharply increased in male germ cells at 17.5 days post coitum, but remained low in female germ cells at all fetal stages. Global changes in chromatin composition: i, preceded global DNA methylation in fetal germ cells; ii, sex specifically occurred in male but not in female germ cells; iii, affected active and repressive histone marks and iv, included histone tail and histone globular domain modifications. Our data suggest that dynamic changes of chromatin composition may provide a framework for the pattern of male-specific de novo DNA methylation in prospermatogonia.  相似文献   

10.
11.
12.
As components of the 42S storage particles (thesaurisomes), thesaurin a and thesaurin b are involved in the long-term storage of tRNA and 5S RNA in previtellogenic oocytes of Xenopus laevis. Thesaurin a and thesaurin b are among the most abundant proteins in previtellogenic oocytes. We show here that the mRNAs encoding thesaurin a and thesaurin b are present not only in previtellogenic oocytes but also in pre-meiotic germ cells (oogonia). These mRNAs can also be detected in spermatogonia and early spermatocytes, and are translated into protein in testis, as they are in ovary. We conclude that male germ cells mimic female germ cells in several aspects of gene activity related to RNA accumulation and metabolism.  相似文献   

13.
14.
Using fluorescence-activated cell sorting combined with fluorescence microscopy the mechanism of embryonic germ cell death in the mouse has been shown to be apoptosis. Primordial germ cells (PGCs) from embryos at specific developmental stages have been analyzed, and cells with apoptotic morphology have been isolated by cell sorting. In the female, apoptotic oogonia at Day 13 and apoptotic oocytes at Days 15 and 17 were found. In the male, apoptotic cells were seen on Day 13 through Day 17. Apoptotic germ cells were not detected at Day 12 (combined male and female PGCs). Examination of sorted cells by fluorescence microscopy and by light microscopic analysis after alkaline phosphatase staining confirmed that the cells are apoptotic germ cells. Electron microscopy further confirmed that cells showing the morphological characteristics of apoptosis are present.  相似文献   

15.
The developmental fate of male and female cells in the ovary and testis was evaluated by injecting blastodermal cells from Stage X (Eyal-Gliadi and Kochav, 1976: Dev Biol 49:321–337) chicken embryos into recipients at the same stage of development to form same-sex and mixed-sex chimeras. The sex of the donor was determined by in situ hybridization of blastodermal cells to a probe derived from repetitive sequences in the W chromosome. The sex of the recipient was assigned after determination of the chromosomal composition of erythrocytes from chimeras at 10, 20, 40, and 100 days of age. If the sex chromosome complement of all of the erythrocytes was the same as that of blastodermal cells from the donor, the sex of the recipient was assumed to be the same as that of the donor. Conversely, if the sex-chromosome complement of a portion of the erythrocytes of the chimera differed from that of the donor blastodermal cells, the sex of the recipient was assumed to differ from that of the donor. Injection of male blastodermal cells into female recipients produced both male and female chimeras in equal proportions whereas injection of female cells into male recipients produced only male chimeras. One phenotypically male chimera developed with a left ovotestis and a right testis although sexual differentiation was usually resolved into an unambiguous sexual phenotype during development when ZZ and ZW cells were present in a chimera. Donor cells contributed to the germline of 25–33% of same-sex chimeras whereas 67% of male chimeras produced by injecting male donor cells into female recipients incorporated donor cells into the germline. When ZW cells were incorporated into chimeric males, W-chromosome-specific DNA sequences were occasionally present in DNA extracted from semen. To examine the potential of W-bearing spermatozoa to fertilize ova, males producing ZW-derived offspring and semen in which W-chromosome-specific DNA was detected by Southern analysis were mated to sex-linked albino hens. Since sex-linked albino female progeny were not obtained from this mating, it was concluded that the W-bearing sperm cells were unable to fertilize ova. The production of Z-derived, but not W-derived, offspring from ZW spermatogonia indicates that female primordial germ cells can become spermatogonia in the testes. In the testes, ZW spermatogonia enter meiosis I and produce functional ZZ spermatocytes. The ZZ spermatocytes complete the second meiotic division, continue to differentiate during spermiogenesis, and leave the seminiferous tubules as functional spermatozoa. By contrast, the WW spermatocytes do not appear to complete spermiogenesis and, therefore, spermatozoa bearing the W chromosome are not produced. When cells from male embryos were incorporated into a female chimera, ZZ “oogonia” were included within the ovarian follicles and the chromosome complement of genetically male oogonia was processed normally during meiosis. Following ovulation, the male-derived ova were fertilized and produced normal offspring. This is the first reported evidence that genetically male avian germ cells can differentiate into functional ova and that genetically female germ cells can differentiate into functional sperm. © 1995 wiley-Liss, Inc.  相似文献   

16.
Illegitimate pairing of the X and Y chromosomes in Sxr mice   总被引:3,自引:0,他引:3  
X/Y male mice carrying the sex reversal factor, Sxr, on their Y chromosomes typically produce 4 classes of progeny (recombinant X/X Sxr male male and X/Y non-Sxr male male, and non-recombinant X/X female female and X/Y Sxr male male) in equal frequencies, these deriving from obligatory crossing over between the chromatids of the X and Y during meiosis. Here we show that X/Y males that, exceptionally, carry Sxr on their X chromosome, rather than their Y, produce fewer recombinants than expected. Cytological studies confirmed that X-Y univalence is frequent (58%) at diakinesis as in X/Y Sxr males, but among those cells with X-Y bivalents only 38% showed normal X-Y pseudo-autosomal pairing. The majority of such cells (62%) instead showed an illegitimate pairing between the short arms of the Y and the Sxr region located at the distal end of the X, and this can be understood in terms of the known homology between the testis-determining region of the Y short arm and that of the Sxr region. This pairing was sufficiently tenacious to suggest that crossing over took place between the 2 regions, and misalignment and unequal exchange were suggested by indications of bivalent asymmetry. Metaphase II cells deriving from meiosis I divisions in which the normal X-Y exchange had not occurred were also found. The cytological data are therefore consistent with the breeding results and suggest that normal pseudo-autosomal pairing and crossing over is not a prerequisite for functional germ cell formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Spermatogenesis in XO,Sxr mice: role of the Y chromosome   总被引:2,自引:0,他引:2  
The goal of this investigation was to evaluate the role of the Y chromosome in spermatogenesis by a quantitative and qualitative analysis of spermatogenesis as it occurs in the absence of a significant portion of the Y chromosome, i.e., in XO,Sxr male mice. Although these mice have the testis-determining portion of the Y chromosome on their single X chromosome, they lack most of the Y chromosome. Since it was found that all sperm-specific structures were assembled in a normal spatial and temporal pattern in spermatids of XO,Sxr mice, the genes controlling these structures cannot be located on the Y chromosome outside of the Sxr region, and are more likely to be on autosomes or on the X chromosome. In spite of the assembly of the correct sperm-specific structures, spermatogenesis was not quantitatively normal in XO,Sxr mice and significantly reduced numbers of spermatids were found in the seminiferous tubules of these mice. Furthermore, two size classes of spermatids were found in the testes of XO,Sxr mice, normal and twice-normal size. These findings are suggestive of abnormalities of meiosis in XO,Sxr spermatocytes, which lack one of the two sex chromosomes, and may not implicate function of specific genes on the Y chromosome. Morphological abnormalities of spermatids, which were not unique to XO,Sxr mice, were observed and these may be due to either a defective testicular environment because of reduced numbers of germ cells or to the lack of critical Y chromosome-encoded products. Since pachytene spermatocytes of XO,Sxr mice exhibited a sex vesicle, it can be concluded that the assembly of this structure does not depend on the presence of either a complete Y chromosome or the pairing partner for the X chromosome.  相似文献   

18.
19.
PTEN (phosphatase and tensin homologue deleted on chromosome ten) plays critical roles in multiple cellular processes, including cell proliferation, survival, migration and transformation. A role of PTEN in mammalian spermatogenesis, however, has not been explored. To address this question, we generated a mouse model with PTEN conditional knockout in postnatal male germ cells. We found that spermatogenesis was normal in PTEN-deleted male germ cells. PTEN conditional mutant males produced sperm and sired offspring as competently as wild-type littermates. Moreover, our biochemical analysis also indicated that the Akt (acutely transforming retrovirus AKT8 in rodent T cell lymphoma) signalling pathway was not affected in mutant testis. Taken together, these findings demonstrate that PTEN is dispensable in mouse spermatogenesis.  相似文献   

20.
We have analyzed the mechanism of sex determination in the germ line of Drosophila by manipulating three parameters: (1) the ratio of X-chromosomes to sets of autosomes (X:A); (2) the state of activity of the gene Sex-lethal (Sxl), and (3) the sex of the gonadal soma. To this end, animals with a ratio of 2X:2A and 2X:3A were sexually transformed into pseudomales by mutations at the sex-determining genes Sxl (Sex-lethal), tra (transformer), tra-2 (transformer-2), or dsx (double-sex). Animals with the karyotype 2X;3A were also transformed into pseudofemales by the constitutive mutation SxlM1. The sexual phenotype of the gonads and of the germ cells was assessed by phase-contrast microscopy. Confirming the conclusions of Steinmann-Zwicky et al. (Cell 57, 157, 1989), we found that all three parameters affect sex determination in germ cells. In contrast to the soma in which sex determination is completely cell-autonomous, sex determination in the germ line has a non-autonomous component inasmuch as the sex of the soma can influence the sexual pathway of the germ cells. Somatic induction has a clear effect on 2X;2A germ cells that carry a Sxl+ allele. These cells, which form eggs in an ovary, can enter spermatogenesis in testes. Mutations that cause partial loss of function or gain of function of Sxl thwart somatic induction and, independently of the sex of the soma, dictate spermatogenesis or oogenesis, respectively. Somatic induction has a much weaker effect on 2X;3A germ cells. This ratio is essentially a male signal for germ cells which consistently enter spermatogenesis in testes, even when they carry SxlM1. In a female soma, however, SxlM1 enables the 2X;3A germ cells to form almost normal eggs. Our results show that sex determination in the germ line is more complex than in the soma. They provide further evidence that the state of Sxl, the key gene for sex determination and dosage compensation in the soma, also determines the sex of the germ cells, and that, in the germ line, the state of activity of Sxl is regulated not only by the X:A ratio, but also by somatic inductive stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号