首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Dynamics of spontaneous activity in neocortical slices.   总被引:15,自引:0,他引:15  
The flow of activity in the cortical microcircuitry is poorly understood. We use calcium imaging to reconstruct, with millisecond and single-cell resolution, the spontaneous activity of populations of neurons in unstimulated slices from mouse visual cortex. We find spontaneous activity correlated among networks of layer 5 pyramidal cells. Synchronous ensembles occupy overlapping territories, often share neurons, and are repeatedly activated. Sets of neurons are also sequentially activated numerous times. Network synchronization and sequential correlations are blocked by glutamatergic antagonists, even though spontaneous firing persists in many "autonomously active" neurons. This autonomous activity is periodic and depends on hyperpolarization-activated cationic (H) and persistent sodium (Na(p)) currents. We conclude that the isolated neocortical microcircuit generates spontaneous activity, mediated by a combination of intrinsic and circuit mechanisms, and that this activity can be temporally precise.  相似文献   

2.
Acute experiments on nonanesthetized curare-treated rats with the recording of the neuronal activity of the cortex were conducted; a determination was made of the threshold doses in which diazepam influenced the spontaneous and induced activity of the neurons of the sensory-motor and optic cortex. Diazepam proved to depress the spontaneous and induced activity of the neurons of the sensory-motor and optic cortex. Diazepam proved to depress the spontaneous and induced activity of the neurons of the sensory-motor cortex in considerably lesser doses than the neuronal activity of the optic cortex. It is supposed that the neurons of the anterior portions of the cortex were more sensitive to diazepam than the neurons of the limbic structures and the reticular formation.  相似文献   

3.
GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca(2+) currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for respiratory sinus arrhythmia as there is an increase in heart rate during inspiration that occurs via inhibition of premotor parasympathetic cardioinhibitory neurons in the NA during inspiration.  相似文献   

4.
The formation of fine retinotopic order by growing optic fibers in the goldfish is thought to be mediated by the correlated firing of optic fibers from neighboring retinal ganglion cells. Although the activity of the tectal cells must also be important for this activity-dependent refinement, few studies have analyzed the pattern and local correlation of the intrinsic activity of tectal neurons and the effect of denervation on this activity. To address this issue, spontaneous (nonoptic driven) activity was analyzed and cross-correlograms were computed between individual tectal neurons using single and double electrode extracellular recordings. Recordings were made in normally innervated tectum in which the contribution of optic activity was eliminated by short-term intraocular blockade with tetrodotoxin and in denervated tecta in which the optic nerve had been severed several weeks prior. Several observations were relevant to activitydependent refinement: First, coupling between neighboring tectal cells is weak. Second, the time duration for local correlation is relatively long, as long as 200 ms. Third, tectal neurons exhibit spontaneous bursting. Fourth, denervation increased the level of spontaneous activity in the tectum. The increased spontaneous activity and bursting following denervation implies that tectal neurons are more excitable when optic fibers are beginning to reinnervate the tectum. This could make it possible for optic fibers to drive tectal neurons at a time when their input to individual neurons is severely weakened by a lack of spatial convergence. The weak coupling between tectal cells and the consequent long-time constant for correlated activity implies a constraint on the duration of correlated retinal activity that is used for activitydependent refinement. Since optic fibers likely need to detect the postsynaptic activity of a local group of tectal neurons, rather than that of a single neuron, the long tectal time constant means that retinal activity need not be correlated with precision much better than 200 ms because the postsynaptic circuitry cannot generate shorter correlations. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The effect of acetylcholine, noradrenalin, and serotonin on spontaneous activity of visual cortical neurons and on their activity evoked by flashes, recorded extracellularly, was studied by microiontophoresis in unanesthetized rabbits. The ability of visual cortical neurons to respond to light does not correlate with their sensitivity to acetylcholine. This substance, which changes the spontaneous firing rate of many of the neurons tested, was less effective against their evoked activity. Noradrenalin had a powerful depressant action on both spontaneous and evoked activity of most neurons studied. Serotonin acted in different ways on the spontaneous and evoked activity of some neurons tested. It is postulated that acetylcholine mediates reticulo-cortical inputs, noradrenalin is a true inhibitory mediator in the cerebral cortex, and serotonin has a presynaptic action by preventing the liberation of natural mediators.  相似文献   

6.
The analysis of information coding in neurons requires methods that measure different properties of neuronal signals. In this paper we review the recently proposed measure of randomness and compare it to the coefficient of variation, which is the frequently employed measure of variability of spiking neuronal activity. We focus on the problem of the spontaneous activity of neurons, and we hypothesize that under defined conditions, spontaneous activity is more random than evoked activity. This hypothesis is supported by contrasting variability and randomness obtained from experimental recordings of olfactory receptor neurons in rats.  相似文献   

7.
Primary afferent neurons of the lateral-line mechanosensory organs, which are believed to be closely related to the auditory and vestibular organs, exhibit "spontaneous" action potentials in the absence of mechanical stimulation of the receptor cells (hair cells). Sinusoidal mechanical stimulation of the hair cells enhances the impulse rate of the afferent neurons. The spontaneous activity is found to be a decreasing function of increasing concentration of either external magnesium or calcium, when each cation is varied in the absence of the other and bath-applied to the synaptic side of the lateral-line mechanoreceptors. One mM to 6 mM magnesium with 5 mM EGTA (the latter for chelation of remaining traces of calcium) permits undiminished spontaneous afferent activity of lateral-line neurons for as long as 3 to 4 hours. With bath-applied calcium, mechanical stimulation results in evoked incremental activity--defined as total activity with stimulation minus spontaneous activity--which significantly increases with increasing calcium concentration. However, with magnesium and EGTA in the bath, mechanical stimulation produces no increase in the neural firing rate above spontaneous rate for any magnesium concentration tested. Taken together, these results suggest that spontaneous activity, in contrast to evoked incremental activity, does not require external calcium in the bath, and production of spontaneous neural action potentials may proceed via mechanisms that are modifications of those of classical stimulus-secretion coupling.  相似文献   

8.
Changes in spontaneous unit activity in the dorsal zones of the spinal cord in response to temperature stimulation of the skin of the thigh and leg were investigated in acute experiments on cats lightly anesthetized with pentobarbital. Two groups of neurons were distinguished by the character of their response. The firing rate of the first group of neurons was changed only in response to cold or warmth. The neurons of the second group responded in opposite ways to the two types of stimulation. Frequency characteristics of spontaneous activity of temperature-sensitive units located in both white and gray matter were determined. In all the lumbar segments their depth was not below the 5th layer of gray matter. Mechanisms of the changes in spontaneous activity and the possible pathways of conduction of temperature sensation are discussed.  相似文献   

9.
Changes in spontaneous activity of 291 neurons in the rabbit amygdala were analyzed during microelectrophoretic application of somatostatin under pentobarbital anesthesia. Somatostatin was found both to enhance and to inhibit the spontaneous activity of these cells, by contrast with the exclusively inhibitory effect on spontaneous activity of hypothalamic neurons described previously. After partial chronic deafferentiation of the amygdala, 76% of 103 neurons responded to somatostatin application; 90% of the responding cells, in which the initial spontaneous firing rate was 6–20 spikes/sec, responded by more rapid firing, and only 10% of neurons (with an initial spontaneous discharge frequency of over 20 spikes/sec) showed a decrease in firing rate. Neuronal responses in the amygdala to somatostatin, glutamate, and noradrenalin are compared. Preliminary application of noradrenalin caused an increase in the number of inhibitory responses on subsequent application of somatostatin to the same cell.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 601–607, November–December, 1982.  相似文献   

10.
Each eye of Aplysia contains a circadian clock that produces a robust rhythm of optic nerve impulse activity. To isolate the pacemaker neurons and photoreceptors of the eye and determine their participation in the circadian clock and its generation of rhythmic autoactivity, the retina was dissociated and its cells were placed in primary cell culture. The isolated neurons and photoreceptors survived and vigorously extended neurites tipped with growth cones. Many of the photoreceptors previously described from histological sections of the intact retina were identified in culture, including the large R-type photoreceptor, which gave robust photoresponses, and the smaller tufted, whorled, and flared photoreceptors. The pacemaker neurons responsible for the rhythmic impulse activity generated by the eye were identified by their distinctive monopolar morphology and recordings were made of their activity. Isolated pacemaker neurons produced spontaneous action potentials in darkness, and pacemaker neurons attached to fragments of retina or in an isolated cluster interacted to produce robust spontaneous activity. This study establishes that isolated retinal pacemaker neurons retain their innate autoactivity and ability to produce action potentials in culture and that clusters of coupled pacemaker neurons are capable of generating robust autoactivity comparable to pacemaker neuron rhythmic activity recorded in the intact retina, which was previously shown to correspond to 1:1 with the optic nerve compound action potential activity. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)--short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations.  相似文献   

12.
The effect of frontoparietal sensorimotor (FPSM) cortex stimulation on both the spontaneous and the noxious evoked activity of neurons in the lateral reticular nucleus (LRN) was tested in barbiturate-anesthetized rats. Ninety-three LRN neurons that responded to a noxious heat stimulus (HS) were recorded (72% antidromically fired from the cerebellum). Of these, 66 neurons altered their spontaneous firing rates in response to cortical stimulation. Two patterns of responses were found: either an excitation followed by a suppression of spontaneous activity (52 neurons), or a pure suppression of spontaneous activity lasting 50-400 msec (14 neurons). In 46 of these neurons, it was found that cortical stimulation reduced HS-evoked activity to near the baseline level. Furthermore, it was found that when applied after a prolonged cortical stimulation, the HS was ineffective. It is concluded that FPSM cortex can influence nociceptive information in LRN neurons that respond to its stimulation, possibly interfering with the mechanisms underlying stimulation-produced analgesia (SPA). In this context, it is proposed that the cortex can modulate the activity of LRN neurons that activate, through local loops, a descending antinociceptive system and also a separate projection system to the cerebellum.  相似文献   

13.
The effect of frontoparietal sensorimotor (FPSM) cortex stimulation on both the spontaneous and the noxious evoked activity of neurons in the lateral reticular nucleus (LRN) was tested in barbiturate-anesthetized rats. Ninety-three LRN neurons that responded to a noxious heat stimulus (HS) were recorded (72% antidromically fired from the cerebellum). Of these, 66 neurons altered their spontaneous firing rates in response to cortical stimulation. Two patterns of responses were found: either an excitation followed by a suppression of spontaneous activity (52 neurons), or a pure suppression of spontaneous activity lasting 50-400 msec (14 neurons). In 46 of these neurons, it was found that cortical stimulation reduced HS-evoked activity to near the baseline level. Furthermore, it was found that when applied after a prolonged cortical stimulation, the HS was ineffective. It is concluded that FPSM cortex can influence nociceptive information in LRN neurons that respond to its stimulation, possibly interfering with the mechanisms underlying stimulation-produced analgesia (SPA). In this context, it is proposed that the cortex can modulate the activity of LRN neurons that activate, through local loops, a descending antinociceptive system and also a separate projection system to the cerebellum.  相似文献   

14.
Using intra- and extracellular recording techniques we examined the spontaneous discharge and membrane properties of respiratory-related neurons in isolated brainstem preparations of the frogs Rana catesbeiana and Rana pipiens that display spontaneous respiratory related activity in vitro. We observed neurons that depolarize during the fictive lung ventilation cycle as well as neurons that depolarize during the non-lung ventilation phase. Respiratory-related neurons demonstrated significant decreases in membrane input resistance during the fictive lung ventilation cycle but showed no evidence of voltage-dependent membrane conductances activated near resting membrane potential. Furthermore, respiratory neurons showed little spike frequency adaptation, their oscillatory activity was not dissociated from the global respiratory motor output following imposed changes in membrane potential, and spontaneous fluctuations in membrane potential were not observed following reversible interruption of respiratory burst activity by application of solutions low in calcium and high in magnesium. Taken together these results suggest that bulbar respiratory neurons in the isolated frog brainstem sampled in our study do not display endogenous bursting characteristics. Rather, they are strongly influenced by synaptic input. Accepted: 20 March 1997  相似文献   

15.
The results of a computerized statistical analysis of 366 realizations of spontaneous spike activity of 181 neurons in the primary auditory cortex (area 50) of waking cats at rest and during defensive conditioning are described. In both situations the parameters of spontaneous activity of most neurons differed from those of a random flow. Conditioning led, on the one hand, to a stable increase in the frequency of spontaneous activity in intertrial periods and, on the other hand, judging from changes in the mean firing rate, the coefficients of variation of the length of the interspike intervals, the histograms of their distribution, and also the increase in the number of neurons with different forms of correlation between interspike intervals, to an increase in its stability (degree of organization).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 227–238, May–June, 1978.  相似文献   

16.
Synaptic mechanisms of burst activity generation in certain neurons of the tectum opticum and mechanisms of generation of stimulation-induced group discharges by certain secondary neurons of the olfactory bulb were analyzed in carp (Cyprinus carpio L.). Spikes of the spontaneous discharge in neurons of the tectum were accompanied by depolarizing after-potentials, which caused the burst discharges of these cells. Evidence is given in support of the synaptic nature of the after-potential; it is suggested that it is generated by a recurrent collateral mechanism. Synaptic bombardment causing the appearance of a group discharge in olfactory bulb neurons and groups of spikes in their spontaneous activity was found to be intermittent in character. These features of unit activity in the olfactory bulb are shown to be connected with the presence of excitatory synaptic interaction between several neurons, probably dendro-dendritic in nature.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiay, Vol. 14, No. 5, pp. 483–490, September–October, 1982.  相似文献   

17.
Takeda M  Matsumoto S 《Life sciences》2002,71(22):2681-2690
To clarify whether GABAergic or glycinergic transmission alters the activity of inspiratory neurons during spontaneous augmented breaths, we recorded the single unit activity from inspiratory neurons in the dorsal and ventral respiratory groups in the medulla of pentobarbital anesthetized rats and applied GABA(A) and glycine receptor agonists by iontophoresis using multibarrel microelectrodes. The spontaneous augmented breath was divided into two different phases; the first phase (phase I) resembled a normal inspiration but the second phase (phase II) indicated a marked increase in diaphragm electromyogram activity. During application of either muscimol or glycine, the discharge of inspiratory neurons during the phase I of spontaneous augmented breaths was suppressed, but the augmenting discharge of the phase II did not change significantly in any cell type of the neurons (I-augmenting, I-decrementing and I-other). These results suggested that the excitatory inputs to inspiratory neurons during the phase II of augmented breaths may not be significantly influenced by the activation of either GABA(A) receptors or glycine receptors.  相似文献   

18.
All higher order central nervous systems exhibit spontaneous neural activity, though the purpose and mechanistic origin of such activity remains poorly understood. We quantitatively analyzed the ignition and spread of collective spontaneous electrophysiological activity in networks of cultured cortical neurons growing on microelectrode arrays. Leader neurons, which form a mono-synaptically connected primary circuit, and initiate a majority of network bursts were found to be a small subset of recorded neurons. Leader/follower firing delay times formed temporally stable positively skewed distributions. Blocking inhibitory synapses usually resulted in shorter delay times with reduced variance. These distributions are characterizations of general aspects of internal network dynamics and provide estimates of pair-wise synaptic distances. The resulting analysis produced specific quantitative constraints and insights into the activation patterns of collective neuronal activity in self-organized cortical networks, which may prove useful for models emulating spontaneously active systems.  相似文献   

19.
During brain development, before sensory systems become functional, neuronal networks spontaneously generate repetitive bursts of neuronal activity, which are typically synchronized across many neurons. Such activity patterns have been described on the level of networks and cells, but the fine-structure of inputs received by an individual neuron during spontaneous network activity has not been studied. Here, we used calcium imaging to record activity at many synapses of hippocampal pyramidal neurons simultaneously to establish the activity patterns in the majority of synapses of an entire cell. Analysis of the spatiotemporal patterns of synaptic activity revealed a fine-scale connectivity rule: neighboring synapses (<16?μm intersynapse distance) are more likely to be coactive than synapses that are farther away from each other. Blocking spiking activity or NMDA receptor activation revealed that the clustering of synaptic inputs required neuronal activity, demonstrating a role of developmentally expressed spontaneous activity for connecting neurons with subcellular precision.  相似文献   

20.
Human induced pluripotent stem cell (hiPSC)-derived neurons may be effectively used for drug discovery and cell-based therapy. However, the immaturity of cultured human iPSC-derived neurons and the lack of established functional evaluation methods are problematic. We here used a multi-electrode array (MEA) system to investigate the effects of the co-culture of rat astrocytes with hiPSC-derived neurons on the long-term culture, spontaneous firing activity, and drug responsiveness effects. The co-culture facilitated the long-term culture of hiPSC-derived neurons for >3 months and long-term spontaneous firing activity was also observed. After >3 months of culture, we observed synchronous burst firing activity due to synapse transmission within neuronal networks. Compared with rat neurons, hiPSC-derived neurons required longer time to mature functionally. Furthermore, addition of the synapse antagonists bicuculline and 6-cyano-7-nitroquinoxaline-2,3-dione induced significant changes in the firing rate. In conclusion, we used a MEA system to demonstrate that the co-culture of hiPSC-derived neurons with rat astrocytes is an effective method for studying the function of human neuronal cells, which could be used for drug screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号