首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effects of saturated, monounsaturated and polyunsaturated non-esterified fatty acids on the rate of transfer of radiolabeled cholesteryl esters from high density lipoproteins (HDL) to low density lipoproteins (LDL), induced by the cholesteryl ester transfer protein (CETP), have been studied. Human high-density lipoproteins-subfraction 3 (HDL3) containing radiolabeled cholesteryl esters were incubated with LDL at 37 degrees C with or without CETP and in the absence or in the presence of non-esterified fatty acids. Less than 6% of the total radioactivity was recovered in the LDL fraction after incubation of HDL3, and LDL for 3 h at 37 degrees C in the absence of CETP, regardless of whether or not non-esterified fatty acids were added. The addition of CETP to the incubation mixture induced a time-dependent redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. Non-esterified fatty acids were found to alter the rate of transfer of cholesteryl esters induced by CETP. While short chain saturated non-esterified fatty acids (caprylic and capric acids) had no effect on the rate of transfer of cholesteryl esters, the medium and long chain ones (lauric, myristic, palmitic and stearic acids) significantly increased the CETP-mediated transfers from HDL3 to LDL. At low concentrations, unsaturated fatty acids also stimulated the CETP-mediated redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. As the concentration of either oleic, linoleic or arachidonic acids increased to higher levels, a significant proportion of fatty acids remained unassociated with lipoprotein particles. Under these circumstances the transfer process was inhibited. These results show that non-esterified fatty acids can modulate the CETP-mediated transfer of cholesteryl esters from HDL to LDL and that this effect is dependent on both the length and the degree of unsaturation of their monomeric carbon chain.  相似文献   

2.
In a previous publication (Lagrost, L. and Barter, P.J. (1991) Biochim. Biophys. Acta 1085, 209-216), saturated and cis unsaturated non-esterified fatty acids have been shown to modulate the rate at which cholesteryl esters are transferred from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) in the presence of the human cholesteryl ester transfer protein (CETP). In the present report, the effects of cis (oleic acid) and trans (elaidic acid) monounsaturated isomers on the CETP-mediated transfer of cholesteryl esters between HDL and LDL were compared. Mixtures of human LDL and HDL3, containing or not radiolabelled cholesteryl esters, were incubated at 37 degrees C with CETP in the presence or in the absence of either stearic (18:0), oleic (18:1 cis) or elaidic (18:1 trans) acids. It was observed that oleic acid and elaidic acid had different effects on the CETP-mediated redistribution of radiolabelled cholesteryl esters as well as on the net mass transfer of cholesterol from HDL3 to LDL. In particular, at high non-esterified fatty acid/lipoprotein ratio, the transfer of cholesteryl esters was significantly inhibited by the cis isomer and increased by the trans isomer.  相似文献   

3.
It has been reported previously that the particle size distribution of discoidal, reconstituted HDL (r-HDL) changes dramatically during incubation in vitro with cholesteryl ester transfer protein (CETP). The present study was undertaken in order to determine whether these changes are influenced by the apolipoprotein composition of the r-HDL. Two preparations of r-HDL that contained egg phosphatidylcholine (egg PC) and unesterified cholesterol (UC) but differed in their apolipoprotein composition were used for the study. One preparation contained apolipoprotein (apo) A-I only (A-I w/o A-II r-HDL) while the other contained apoA-I and apoA-II (A-I w A-II r-HDL). The Stokes' radius of the major population of particles in the (A-I w/o A-II) and (A-I w A-II) r-HDL was, respectively, 4.8 and 4.9 nm. When the (A-I w/o A-II) r-HDL were incubated with CETP, most of the particles of radius 4.8 nm were converted to populations of smaller and larger particles. The smaller particles had Stokes' radii of 4.3 and 3.9 nm. The radii of the larger particles ranged from 8.2 to 13.7 nm. When the (A-I w A-II) r-HDL were incubated with CETP larger particles (Stokes' radii = 8.4-11.0 nm) appeared but there was minimal conversion to smaller particles. In addition, a significant proportion of the original (A-I w A-II) r-HDL of radius 4.9 nm was still present at the end of the incubation. These results are consistent with apoA-II inhibiting the conversion of r-HDL to small particles. It is concluded that the apolipoprotein content of r-HDL is an important determinant of the sizes of the particles that are formed during incubation with CETP.  相似文献   

4.
Studies have been performed to determine the involvement of very-low-density lipoproteins (VLDL), cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) in the formation of very small HDL particles. Human whole plasma has been incubated for 6 h at 37 degrees C in the absence and in the presence of various additions. There was minimal formation of very small HDL in incubations of non-supplemented plasma or in plasma supplemented with either VLDL, CETP or HL alone; nor were small HDL prominent after incubating plasma supplemented with mixtures of VLDL plus CETP, VLDL plus HL or CETP plus HL. By contrast, when plasma was supplemented with a mixture containing all three of VLDL, CETP and HL, incubation resulted in an almost total conversion of the HDL fraction into very small particles of radius 3.7 nm. The appearance of these very small HDL was independent of activity of lecithin: cholesterol acyltransferase. It was, however, dependent on both duration of incubation and on the concentrations of the added VLDL, CETP and HL. The effects of these incubations was also assessed in terms of changes to the concentration and distribution of lipid constituents across the lipoprotein spectrum. It was found that not only did lipid transfers and HL exhibit a marked synergism in promoting a reduction in HDL particle size but also that HL, although deficient in intrinsic transfer activity, enhanced the CETP-mediated transfers of cholesteryl esters from HDL to other lipoprotein fractions.  相似文献   

5.
The absolute rates of reaction of the trichloromethylperoxy radical, CCl3OO, derived from carbon tetrachloride and the halothane peroxy radical, CF3CHClOO, with oleic, linoleic, linolenic and arachidonic acids have been determined using the fast reaction technique of pulse radiolysis. In general, the rates of reaction of the radical derived from carbon tetrachloride are approximately five times greater than those for the halothane related radical. In both cases the rate constant increases with increasing unsaturation of the fatty acid in agreement with the known greater susceptibility of polyunsaturated fatty acids to peroxidative decomposition.  相似文献   

6.
Purified human cholesteryl ester transfer protein (CETP) has been found, under certain conditions, to promote changes to the particle size distribution of high-density lipoproteins (HDL) which are comparable to those attributed to a putative HDL conversion factor. When preparations of either the conversion factor or CETP are incubated with HDL3 in the presence of very-low-density lipoproteins (VLDL) or low-density lipoproteins (LDL), the HDL3 are converted to very small particles. The possibility that the conversion factor may be identical to CETP was supported by two observations: (1) CETP was found to be the main protein constituent of preparations of the conversion factor and (2) an antibody to CETP not only abolished the cholesteryl ester transfer activity of the conversion factor preparations but also inhibited changes to HDL particle size. In additional studies, the changes to HDL particle size promoted by purified CETP were inhibited by the presence of fatty-acid-free bovine serum albumin; by contrast, albumin had no effect on the cholesteryl ester transfer activity of the CETP. The possibility that albumin may inhibit changes to HDL particle size by removing unesterified fatty acids from either the lipoproteins or CETP was tested by adding exogenous unesterified fatty acids to the incubations. In incubations of HDL with either VLDL or LDL, sodium oleate had no effect on HDL particle size. However, when CETP was also present in the incubation mixtures the capacity of CETP to reduce the particle size of HDL was greatly enhanced by the addition of sodium oleate. It is concluded that the changes in HDL particle size which were previously attributed to an HDL conversion factor can be explained in terms of the interacting effects of CETP and unesterified fatty acids.  相似文献   

7.
The role of purified plasma lipid transfer protein complexes in determining the particle size distribution of human plasma high density lipoproteins (HDL) was examined in vitro. Incubation of HDL2 or HDL3, isolated from normolipemic subjects with very low density lipoproteins (VLDL) or VLDL-remnants and lipid transfer protein complex had little or no effect on HDL particle size. In contrast, HDL isolated from patients with hypertriglyceridemia, designated HDL3D, showed speciation of particle size distribution when incubated with VLDL-remnants and the transfer protein. Incubation of HDL3D with VLDL-remnants and lipid transfer complex resulted in the production of two particles of radius 4.3 and 3.7 nm; incubation with VLDL or in the absence of the transfer protein did not result in a redistribution of particle size. We suggest that the action of lipid transfer protein complex on triacylglycerol-rich lipoprotein remnants and HDL accounts for the low levels of HDL-cholesterol observed in subjects with severe hypertriglyceridemia.  相似文献   

8.
Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.  相似文献   

9.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

10.
Entomophthora coronata 1932 and E. conica 1716 are quite different in their fatty acid composition and the unsaturation degree of synthesized lipids. The cultures were used as models to study metabolic transformations of exogenous 14C-labeled acetic, palmitic, stearic and oleic acids as well as to compare the activities of the synthetase and desaturase enzyme complexes. The cultures were capable of transforming exogenous acetic and fatty acids into polyunsaturated arachidonic acid. E. coronata 1932 whose lipids mainly contain fatty acids with a short chain could metabolize unsaturated oleic acid to yield polyene fatty acids. However, this culture metabolized exogenous acids at a far lower rate as compared with E. conica 1716. The high content of saturated fatty acids with a short chain in the lipids might be due to the specific action of the synthetase complex and to the low activity of the desaturation enzymes. It has been demonstrated for the first time that exogenous oleic acid is converted at a high rate by the cells into arachidonic acid, a precursor of prostaglandin compounds.  相似文献   

11.
The aim of the present study was to investigate whether unsaturated 2-acyl-lysophosphatidylcholine bound to plasma albumin is a relevant delivery form of unsaturated fatty acids to the developing brain. Twenty-day-old rats were perfused for 30 s with labeled palmitic, oleic, linoleic, and arachidonic acids in either their unesterified form or esterified in 2-acyl-lysophosphatidylcholine labeled on the choline and fatty acid moieties. Both forms were bound to albumin. Incorporation in brain lipid classes was followed within 1 h. The brain uptake of the unesterified fatty acids reached a plateau at 5-15 min and was maximal for arachidonic acid (0.45% of the perfused dose). The brain uptake of palmitoyl-lysophosphatidylcholine was similar to that of palmitic acid, whereas that of other lysophosphatidylcholines increased with the degree of unsaturation (rate and maximal uptake) and was six- to 10-fold higher than that of the corresponding unesterified fatty acid. 2-Acyl-lysophosphatidylcholines were taken up without prior hydrolysis and reacylated into doubly labeled phosphatidylcholine, which was the most labeled lipid class, whereas lipid distribution of the unesterified fatty acid was more diversified. Partial hydrolysis of 2-acyl-lysophosphatidylcholine occurred in the brain tissue, and redistribution of the fatty acyl moiety into other phospholipid classes was also observed and was the highest for arachidonic acid. In this case, the percentage of esterification of this fatty acid in phosphatidylinositol (expressed as a percentage of the total lipid fraction) was relatively lower than that observed when the unesterified form was used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A naturally occurring fatty acid-requiring Butyrivibrio sp. (strain S2), isolated from the ovine rumen, deacylates plant galactolipids, phospholipids and sulpholipids to obtain sufficient fatty acid for growth. Growth in vitro was promoted by adding to the growth medium a single straight-chain saturated fatty acid (C13 to C18) or vaccenic acid. Palmitoleic and oleic acids also supported growth but gave lengthy lag phases probably due to their toxicity. Linolenic and linoleic acids supported good growth but they were completely hydrogenated to trans-11-octadecenoic acid which was incorporated into the bacterial complex lipids. No chain elongation, chain shortening or desaturation of the added fatty acids occurred and all were substantially incorporated into bacterial lipids of the plasmalogen type, partially as a new type of hydrophobic grouping derived from two molecules of fatty acid. The absence of fatty acid unsaturation poses the question of the maintenance of membrane fluidity within this bacterium.  相似文献   

13.
Perturbation of the fatty acid composition of human lymphocytes in vitro was investigated by addition of linoleic acid complexed to bovine serum albumin (BSA-LA) and by mitogenic stimulation with phytohaemagglutinin (PHA). BSA-LA resulted in a 45% increase in linoleic acid in phosphatidylethanolamine (PE) and over 100% in phosphatidylcholine (PC) in peripheral blood cells. Supplementation with BSA-LA in PHA-stimulated lymphocytes produced even greater changes: 100% increase in linoleic acid content for PE and over 300% for PC. There was a large decrease in oleic acid: 40% for PE and almost 100% in PC. Significant decreases in arachidonic acid occurred in both phospholipid fractions. PHA alone also altered membrane phospholipid fatty acid composition, with reductions in palmitic, stearic and linoleic acid for PE and increases in oleic acid and arachidonic acid (almost 100%). For PC, there were large decreases in stearic (40%), linoleic (30%) and arachidonic (40%) acids, together with an increase in oleic acid (65%). Cells supplemented with linoleic acid grown in the presence of PHA, compared with those grown in linoleic acid-supplemented medium alone, showed a 40% decrease in palmitic acid and a 55% increase in arachidonic acid in PE. For PC, there were large decreases in stearic acid (40%) and arachidonic acid (57%). Antibody-induced redistribution of surface molecules ('capping') was inhibited by some 14% after incubation with BSA-LA. However, no consistent alterations in PHA-induced cell proliferation were observed. These data suggest that profound alterations of membrane fatty acid composition occur spontaneously during the mitotic cycle, and may be further induced by experimental manipulation, without gross perturbation of cell function.  相似文献   

14.
This study compares the specificities of selective uptake and transfer mediated by plasma cholesteryl ester transfer protein (CETP) for various species of cholesteryl esters in high density lipoproteins (HDL). [3H]Cholesterol was esterified with a series of variable chain length saturated acids and a series of variably unsaturated 18-carbon acids. These were incorporated into synthetic HDL particles along with 125I-labeled apoA-I as a tracer of HDL particles and [14C]cholesteryl oleate as an internal standard for normalization between preparations. Selective uptake by Y1-BS1 mouse adrenal cortical tumor cells was most extensively studied, but uptake by human HepG2 hepatoma cells and fibroblasts of human, rat, and rabbit origin were also examined. Acyl chain specificities for selective uptake and for CETP-mediated transfer were conversely related; selective uptake by all cell types decreased with increasing acyl chain length and increased with the extent of unsaturation of C18 chains. In contrast, CETP-mediated transfer increased with acyl chain length, and decreased with unsaturation of C18 chains. The specificities of human and rabbit CETP were also compared, and were found to differ little. Associated experiments showed that HDL-associated triglycerides, traced by [3H]glyceryl trioleyl ether, were selectively taken up but at a lesser rate than cholesteryl esters. The mechanism of this uptake appears to be the same as for selective uptake of cholesteryl esters.  相似文献   

15.
Abstract

The unsaturated fatty acids oleic, linoleic and arachidonic inhibited binding of ligands to the ouabain, opiate, and β-adrenergic plasma membrane receptors. Low concentrations of fatty acids slightly increased the binding of ouabain to its binding sites. The effect of these fatty acids on β-adrenergic sensitive adenylate cyclase was more complex. 0.2–0.3 mM fatty acids increased adenylate cyclase activity, while higher concentrations of arachidonic and linoleic acids, but not oleic acid  相似文献   

16.
Effect of exogenous fatty acids on zygote formation in Saccharomyces cerevisiae was studied. Arachidonic and oleic acids considerably stimulated zygote formation, but other fatty acids tested, linoleic, linolenic, stearic and palmitic acids, did not. Pretreatment experiments with arachidonic acid showed that the stimulation of zygote formation by the fatty acid required the presence of mating pheromone.Abbreviations YPD yeast-peptone-dextrose medium - A530 absorbance at 530 nm  相似文献   

17.
Oxidation of low density lipoproteins (LDL) in the presence of myeloperoxidase and subsequent uptake of the oxidized LDL by specialized receptors on macrophages has been suggested as an initiating event of atherosclerosis. Oxidized fatty acid chains within the glycerophospholipids of LDL have been implicated as the recognition feature by the receptors. The ability of three fatty acids (oleic, linoleic, and arachidonic acids) typically contained in the lipid portion of the glycerophospholipids to bind and be oxidized by myeloperoxidase was measured by spectroscopically observing interactions of the lipids with the heme prosthetic group of the enzyme. As unsaturation increases in the lipid chain, myeloperoxidase binds and oxidizes the fatty acid more readily, as measured by KD, KM, and kcat. A possible mechanism of the free radical oxidation by myeloperoxidase is discussed.  相似文献   

18.
The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.  相似文献   

19.
Fatty acid specificity of acyl-CoA synthetase in rat glomeruli   总被引:1,自引:0,他引:1  
The fatty acid specificity of acyl-CoA synthetase in rat glomeruli for physiologically and pathologically important long-chain fatty acids was studied. The apparent Michaelis constants (Km) for substrate fatty acids increased in the order, linolenic less than linoleic less than eicosapentaenoic less than arachidonic less than oleic less than palmitic acid. The maximum velocities with these fatty acids decreased in the order, oleic greater than linoleic greater than palmitic (approximately equal to) linolenic greater than arachidonic greater than eicosapentaenoic acid. The syntheses of radioactive arachidonyl-CoA and palmitoyl-CoA from radioactive arachidonic and palmitic acid, respectively, were both inhibited by all fatty acids mentioned above including the substrate fatty acids, their inhibitory effects being inversely correlated with their apparent Km values. These results suggest that the enzyme in glomeruli has a unique specificity for fatty acids and that there is no arachidonic acid-specific acyl-CoA synthetase in glomeruli. The possible contribution of the glomerular enzyme with this specificity to the abnormal fatty acid levels in diabetic animals is discussed.  相似文献   

20.
Macrophages are able to produce, export, and transfer fatty acids to lymphocytes in culture. The purpose of this study was to examine if labelled fatty acids could be transferred from macrophages to pancreatic islets in co-culture. We found that after 3 h of co-culture the transfer of fatty acids to pancreatic islets was: arachidonic > oleic > linoleic = palmitic. Substantial amounts of the transferred fatty acids were found in the phospholipid fraction; 87.6% for arachidonic, 59.9% for oleic, 53.1% for palmitic, and 36.9% for linoleic acids. The remaining radioactivity was distributed among the other lipid fractions analysed (namely polar lipids, cholesterol, fatty acids, triacylglycerol and cholesterol ester), varying with the fatty acid used. For linoleic acid, a significant proportion (63.1%) was almost equally distributed in these lipid fractions. Also, it was observed that transfer of fatty acids from macrophages to pancreatic islets is time-dependent up to 24 h, being constant and linear with time for palmitic acid and remaining constant after 12 h for oleic acid. These results lead us to postulate that in addition to the serum, circulating monocytes may also be a source of fatty acids to pancreatic islets, mainly arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号