首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crucian carp (Carassius carassius) increases in body depth in response to chemical cues from piscivores and the deeper body constitutes a morphological defence against gape-limited piscivores. In the field, deep-bodied individuals suffer a density-dependent cost when competing with shallow-bodied conspecifics. Here, we use hydrodynamic theory and swimming respirometry to investigate the proposed mechanism underlying this effect, high drag caused by the deep-bodied morphology. Our study confirms that drag is higher for deep-bodied crucian carp, both in terms of estimated theoretical drag and power curve steepness. However, deep-bodied fish swimming at the velocity associated with minimum cost of transport, U mc, did not experience higher costs of transport than shallow-bodied fish. Deep-bodied crucian carp had significantly lower standard metabolic rates, i.e. metabolic rates at rest, and also lower U mc, and the resulting costs of transport were similar for the two morphs. Nevertheless, when deep-bodied individuals deviate from U mc, e.g. when increasing foraging effort under competition, their steeper power curves will cause substantial energy costs relative to shallow-bodied conspecifics. Furthermore, there is evidence that reductions in standard metabolic rate incur costs in terms of lower stress tolerance, reduced growth rate, and life history changes. Thus, this work provides links between hydrodynamics, a cost-reducing mechanism, and a density-dependent fitness cost associated with an inducible defence. Received: 22 March 1999 / Accepted: 14 June 1999  相似文献   

2.
Invasive species cause deep impacts on ecosystems worldwide, contributing to the decline and extinction of indigenous species. Effective defences against native biological threats in indigenous species, whether structural or inducible, often seem inoperative against invasive species. Here, we show that tadpoles of the Iberian green frog detect chemical cues from indigenous predators (dragonfly nymphs) and respond by reducing their activity and developing an efficient defensive morphology against them (increased tail depth and pigmentation). Those defensive responses, however, were not activated against a highly damaging invasive predator (red swamp crayfish). Induced defences increased tadpole survival when faced against either indigenous dragonflies or invasive crayfish, so its inactivation in the presence of the invasive predator seems to be due to failure in cue recognition. Furthermore, we tested for local adaptation to the invasive predator by comparing individuals from ponds either exposed to or free from crayfish. In both cases, tadpoles failed to express inducible defences against crayfish, indicating that ca 30 years of contact with the invasive species (roughly 10-15 frog generations) have been insufficient for the evolution of recognition of invasive predator cues.  相似文献   

3.
Olfactory cues that indicate predation risk elicit a number of defensive behaviors in fishes, but whether they are sufficient to also induce morphological defenses has receivedlittle attention. Cichlids are characterized by a high level of morphological plasticity during development, and the few species that have been tested do exhibit defensive behaviors when exposed to alarm cues released from the damaged skin of conspecifics. We utilized young juvenile Nicaragua cichlids Hypsophrys nicaraguensis to test if the perception of predation risk from alarm cue (conspecific skin extract) alone induces an increased relative body depth which is a defense against gape-limited predators. After two weeks of exposure, siblings that were exposed to conspecific alarm cue increased their relative body depth nearly double the amount of those exposed to distilled water (control) and zebrafish Danio rerio alarm cue. We repeated our measurements over the last two weeks (12 and 14) of cue exposure when the fish were late-stage juveniles to test if the rate of increase was sustained; there were no differences in final dimensions between the three treatments. Our results show that 1) the Nicaragua cichlid has an innate response to conspecific alarm cue which is not a generalized response to an injured fish, and 2) this innate recognition ultimately results in developing a deeper body at a stage of the life history where predation risk is high [Current Zoology 56 (1): 36-42, 2010].  相似文献   

4.
We investigate the dynamic effects of an inducible prey defense in the Nicholson-Bailey predator-prey model. We assume that the defense is of all-or-nothing type but that the probability for a prey individual to express the defended phenotype increases gradually with predator density. Compared to a defense that is independent of predation risk, an inducible defense facilitates persistence of the predator-prey system. In particular, inducibility reduces the minimal strength of the defense required for persistence. It also promotes stability by damping predator-prey cycles, but there are exceptions to this result: first, a strong inducible defense leads to the existence of multiple equilibria, and sometimes, to the destruction of stable equilibria. Second, a fast increase in the proportion of defended prey can create predator-prey cycles as the result of an over-compensating negative feedback. Non-equilibrium dynamics of the model are extremely complex.  相似文献   

5.
Strong evidence affirms that incubation temperatures can influence the phenotype of hatchling reptiles, but few studies have examined the fitness consequences of such modifications. Vulnerability to predation is one plausible way that phenotypic shifts could affect an organism's fitness. We incubated the eggs of three sympatric lizard species at temperatures similar to the thermal extremes of natural nests, and measured several traits that are likely to influence a hatchling's susceptibility to a natural (snake) predator. We also examined the lizards' actual vulnerability to snake predators in direct encounters in the laboratory. Our results show that incubation temperature can affect an individual's date of hatching, morphology, locomotor performance, chemosensory responses to snake scent, and ability to avoid a snake predator during staged laboratory encounters. Incubation temperature did not modify the hatchling's `attractiveness' to snakes (as measured via chemical cues) or its antipredator tactics (propensity to escape predation through fleeing or caudal autotomy). The magnitude and direction of incubation- induced phenotypic shifts varied among the three species (even those with similar life histories, thermoregulatory preferences, and microhabitat requirements), and depended on body temperatures and hatchling age. We conclude that incubation-induced modifications to a lizard's phenotype affect a suite of traits that are likely to influence its vulnerability, and also its actual ability to escape from a predator. This result suggests that incubation regimes can influence organismal fitness via their effects on predator-prey interactions. Received: 21 December 1998 / Accepted: 23 March 1999  相似文献   

6.
Risk-sensitive hatching is adaptive for species facing a trade-off between egg-stage and post-hatching risks, and environmental variation in one or both stages. Such plasticity has been found in amphibians, fishes, reptiles and spiders, with red-eyed treefrogs (Agalychnis callidryas) being the best-studied case. We assessed hatching plasticity and egg- and larval-stage risks in a closely related, syntopic species, the gliding leaf-frog (Agalychnis spurrelli). We found a lower hatching response to egg-eating snakes in A. spurrelli (9–28% of embryos escaped) than in A. callidryas (59–80% escaped). Levels of snake predation were similarly high for clutches of both species monitored at a pond in Costa Rica, and in fish predation experiments early-hatched A. spurrelli tadpoles were more vulnerable than later hatchlings, as has been shown for A. callidryas. A. spurrelli thus face a risk trade-off similar to A. callidryas, and likely would benefit from predator-induced hatching; their lower responsiveness to snakes appears nonadaptive. A. spurrelli embryos showed a stronger hatching response (57% hatched in 1 h) to submergence underwater than to snake attacks even though submergence is a less frequent risk. This suggests they have a greater capacity for early hatching than is expressed in the context of snake attacks, but have much lower sensitivity to snake cues than to flooding cues. Development in A. spurrelli is accelerated compared to syntopic A. callidryas, and spontaneous hatching is earlier and more synchronous. This is congruent with predictions based on selection by egg predators in the absence of a strong escape hatching response.  相似文献   

7.
Synopsis Green razorfish are Caribbean wrasses that live in harems on shallow sand or seagrass beds, which offer little cover for predator avoidance (PA). Field observations showed that non-conspecific fishes that intruded were either attacked, ignored, or actively avoided. Food competitors and small piscivores were attacked by male razorfish. Razorfish PA behaviors varied among three habitats with different substratum compositions, suggesting that these fish possess phenotypic plasticity for PA behavior. In a rocky-rubble habitat, razorfish dove into the coarse sand for PA, but most sand dives observed there were to soften a small site for future PA. In a sandbed habitat, they hid among coral branches and dove into the sand when attacked; few maintenance dives were observed as soft sand was widespread. In a seagrass habitat, they hid among blades of grass for PA, and dove into the sand less frequently than at the other sites. Some female razorfish that were transferred among habitats adopted PA behaviors similar to those of females in the new site, while others did not, suggesting that behavioral plasticity is not universal in this species. Razorfish spawned lower in the water column in the presence of natural predators and a predator model, than when these were absent. When the predator model was introduced into a male's territory during spawning periods, there was a reduction in his courtship rate, but not in the number of spawns he achieved. Predation pressure may reduce males' long-term fitness by causing decreased courtship rates which can facilitate sex change in harem females.  相似文献   

8.
9.
  总被引:4,自引:0,他引:4  
Jürgen Kusch 《Oecologia》1993,96(3):354-359
The predator Amoeba proteus induced behavioural and morphological changes in ciliates of the genus Euplotes. The frequency of avoidance behaviour in E. octocarinatus increased from 16±5% to 84±5% (SD) after 14 h of coexistence with the predator. The ciliate's width increased from 59±3 μm to 77±4 μm (SDM) within 48 h. Similar behavioural, but not morphological, change was induced in E. daidaleos, but neither morphological nor behavioural responses occurred in E. aediculatus. E. octocarinatus and E. daidaleos populations survived in the presence of A. proteus, whereas E. aediculatus populations became extinct by predation. Induced behavioural response seemed to be the reason for the low predation risk of E. octocarinatus and E. daidaleos. The results suggest that Euplotes ciliates have evolved specific defence mechanisms to various predators. Defensive changes are induced by a chemical substance released from A. proteus. This “kairomone” has a molecular weight between 5000 and 10000 Da. Proteolytic digestion of its activity indicated that the avoidance-inducing substance is a peptide. After the turbellarian Stenostomum sphagnetorum had induced a defensive morphology in E. octocarinatus or E. aediculatus, neither of these ciliates immediately avoided Amoeba proteus. Thus, Euplotes ciliates with a defensive morphology do not have behavioural defences in reaction to all predators.  相似文献   

10.
Steiner UK 《Oecologia》2007,152(2):201-210
An organism’s investment in different traits to reduce predation is determined by the fitness benefit of the defense relative to the fitness costs associated with the allocation of time and resources to the defense. Inherent tradeoffs in time and resource allocation should result in differential investment in defense along a resource gradient, but competing models predict different patterns of investment. There are currently insufficient empirical data on changes in investment in defensive traits or their costs along resource gradients to differentiate between the competing allocation models. In this study, I exposed tadpoles to caged predators along a resource gradient in order to estimate investment in defense and costs of defense by assessing predator-induced plasticity. Induced defenses included increased tail depth, reduced feeding, and reduced swimming activity; costs associated with these defenses were reduced developmental rate, reduced growth, and reduced survival. At low resource availability, these costs predominately resulted in reduced survival, while at high resource availability the costs yielded a reduced developmental rate. Defensive traits responded strongly to predation risk, but did not respond to resource availability (with the exception of feeding activity), whereas traits construed as costs of defenses showed the opposite pattern. Therefore, defensive traits were highly sensitive to predation risk, while traits construed as costs of defense were highly sensitive to resource allocation tradeoffs. This difference in sensitivity between the two groups of traits may explain why the correlation between the expression of defensive traits and the expression of the associated defense costs was weak. Furthermore, my results indicate that genetic linkages and mechanistic integration of multiple defensive traits and their associated costs may constrain time and resource allocation in ways that are not addressed in existing models. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Mark C. Belk 《Oecologia》1998,113(2):203-209
Previous studies suggested that differences in age at maturity among populations of bluegill sunfish (Lepomis macrochirus) were not genetically based, but rather were a phenotypic response to the presence of predators. I conducted two experiments to determine if the presence of largemouth bass affected age at maturity in bluegill sunfish. Bluegills from three populations were tested to see if the response to the threat of predation varied among source populations. Juvenile bluegills were maintained in the presence of predators or in controls with no contact with predators. Refuge use and growth were monitored during the experiments and reproductive activity was evaluated when bluegills reached age 1. Bluegills from one population exhibited delayed maturity in the presence of predators. Individuals from the other two populations showed no significant differences between predator and control treatments. The population that responded to the presence of predators had a history of high predation levels over the past 30–40 years. The other populations had a history of low levels of predation. This study suggests that presence of predators can induce phenotypic shifts in age at maturity of bluegills, but that the magnitude of response varies among populations in a manner consistent with historical patterns of coexistence. Received: 7 August 1996 / Accepted: 8 August 1997  相似文献   

12.
Yurewicz KL 《Oecologia》2004,138(1):102-111
Behavioral and morphological traits often influence a key trade-off between resource acquisition and vulnerability to predation, and understanding trait differences between species can provide critical insight into their interactions with other species and their distributions. Such an approach should enhance our understanding of the criteria for coexistence between species that can interact through both competition and predation (i.e. intraguild predators and prey). I conducted a common garden experiment that revealed strong differences between three guild members (larval salamanders Ambystoma laterale, A. maculatum, and A. tigrinum) in behavior, morphology, and growth in the presence and absence of a shared top predator (the larval dragonfly Anax longipes). All three species also reduced their activity and modified their tail fin depth, tail muscle length, and body length in response to non-lethal Anax. Species that act as intraguild predators were more active and could grow faster than their intraguild prey species, but they also suffered higher mortality in laboratory predation trials with Anax. I also used survey data from natural communities to compare the distribution of Ambystoma species between ponds differing in abiotic characteristics and predatory invertebrate assemblages. An intraguild prey species (A. maculatum) was found more reliably, occurred at higher densities, and was more likely to persist late into the larval period in ponds with more diverse invertebrate predator assemblages. Taken together, these results indicate that top predators such as Anax may play an important role in influencing intraguild interactions among Ambystoma and ultimately their local distribution patterns.  相似文献   

13.
Ralph Tollrian 《Oecologia》1995,101(2):151-155
Juvenile Daphnia pulex form neckteeth in reponse to chemicals released by predatory Chaoborus crystallinus larvae. Formation of neckteeth is strongest in the second instar followed by the third instar, whereas only small neckteeth are found in the first and fourth instar of experimental clones. Predation experiments showed that body-size-dependent vulnerability of animals without neckteeth to fourth instar C. crystallinus larvae matched the pattern of neckteeth formation over the four juvenile instars. Predation experiments on D. pulex of the same clone with neckteeth showed that vulnerability to C. crystallinus predation is reduced, and that the induced protection is correlated with the degree of neckteeth formation. The pattern of neckteeth formation in successive instars is probably adaptive, and it can be concluded that neckteeth are formed to different degrees in successive instars as an evolutionary compromise to balance prediation risk and protective costs.  相似文献   

14.
In many amphibian larvae a suite of morphological and behavioural characters varies together in an induced defence against predators, but it remains unclear which features are functionally related to defence. We independently manipulated behaviour and morphology in tadpoles of Hyla versicolor and assessed their consequences for swimming performance and predator escape. Data on burst swimming showed that tadpoles which accelerated rapidly were elongate, with shallow bodies and tails. Predator escape was measured by exposing tadpoles to predators (larval Anax dragonflies or larval Ambystoma salamanders) and recording time until death. Tadpoles were first reared for 30 days in ponds containing either caged Anax or no predators; individuals responded to predators by developing large brightly coloured tails and short bodies. We placed tadpoles of both morphological phenotypes into plastic tubs, and manipulated their behaviour using food and chemical cues from predators. Mortality risk experienced by the predator‐induced phenotype was about half that of the no‐predator phenotype, and risk increased with time spent swimming. An interaction between morphology and behaviour arose because increasing activity caused higher risk for tadpoles with deep tail fins but not shallow tail fins.  相似文献   

15.
In stony corals it is often observed that specimens collected from a sheltered growth site have more open and more thinly branched growth forms than specimens of the same species from more exposed growth sites, where stronger water currents are found. This observation was explained using an abiotic computational model inspired by coral growth, in which the growth velocity depended locally on the absorption of a resource dispersed by advection and diffusion (Kaandorp and Sloot, J. Theor. Biol 209 (2001) 257). In that model a morphological range was found; as the Péclet-number (indicating the relative importance of advective and diffusive nutrient transport) was increased, more compact and spherical growth forms were found. Two unsatisfactory items have remained in this model, which we address in the present paper. First, an explicit curvature rule was responsible for branching. In this work we show that the curvature rule is not needed: the model exhibits spontaneous branching, provided that the resource field is computed with enough precision. Second, previously no explanation was given for the morphological range found in the simulations. Here we show that such an explanation is given by the conditions under which spontaneous branching occurs in our model, in which the compactness of the growth forms depends on the ratio of the rates of growth and nutrient transport. We did not find an effect of flow. This suggests that the computational evidence that hydrodynamics influences the compactness of corals in laminar flows may not be conclusive. The applicability of the Laplacian growth paradigm to understand coral growth is discussed.  相似文献   

16.
    
Although the study of adaptation is central to biology, two types of adaptation are recognized in the biological field: physiological adaptation (accommodation or acclimation; an individual organism’s phenotype is adjusted to its environment) and evolutionary–biological adaptation (adaptation is shaped by natural selection acting on genetic variation). The history of the former concept dates to the late nineteenth and early twentieth centuries, and has more recently been systemized in the twenty-first century. Approaches to the understanding of phenotypic plasticity and learning behavior have only recently been developed, based on cellular–histological and behavioral–neurobiological techniques as well as traditional molecular biology. New developments of the former concepts in phenotypic plasticity are discussed in bacterial persistence, wing di-/polymorphism with transgenerational effects, polyphenism in social insects, and defense traits for predator avoidance, including molecular biology analyses. We also discuss new studies on the concept of genetic accommodation resulting in evolution of phenotypic plasticity through a transgenerational change in the reaction norm based on a threshold model. Learning behavior can also be understood as physiological phenotypic plasticity, associating with the brain–nervous system, and it drives the accelerated evolutionary change in behavioral response (the Baldwin effect) with memory stock. Furthermore, choice behaviors are widely seen in decision-making of animal foragers. Incorporating flexible phenotypic plasticity and learning behavior into modeling can drastically change dynamical behavior of the system. Unification of biological sciences will be facilitated and integrated, such as behavioral ecology and behavioral neurobiology in the area of learning, and evolutionary ecology and molecular developmental biology in the theme of phenotypic plasticity.  相似文献   

17.
Kin recognition in Bufo scaber tadpoles: ontogenetic changes and mechanism   总被引:1,自引:0,他引:1  
Ontogenetic changes in kin-recognition behavior, effect of social environment on kin-recognition ability, and use of visual and chemical cues in kin recognition have been studied in tadpoles of Bufo scaber after rearing them with kin, in mixed groups, or in isolation from Gosner stage 12 (gastrula). By use of a rectangular choice tank the tadpoles were tested for their ability to choose between (a) familiar siblings and unfamiliar non-siblings, (b) unfamiliar siblings and familiar non-siblings, and (c) unfamiliar siblings and unfamiliar non-siblings. When tested without any stimulus groups in the end compartments of the tank, random distribution was observed for the tadpoles and no bias for the apparatus or the procedure. In the presence of kin and non-kin in the end compartments, significantly more tadpoles spent most of their time near kin (familiar or unfamiliar) rather than near non-kin during early larval stages, up to stage 37. After stage 37 (characterized by the differentiation of toes), test tadpoles showed no preference to associate with kin, suggesting an ontogenetic shift in the kin-recognition ability in B. scaber. In experiments involving selective blockade of visual or chemical cues the test tadpoles preferentially associated near their kin on the basis of chemical rather than visual cues. These findings suggest that familiarity with siblings is not necessary for kin recognition and that kin-recognition ability is not modified after exposure to non-kin by mixed rearing. The findings for B. scaber indicate a self referent phenotype matching mechanism of kin recognition which is predominantly aided by chemical rather than visual cues.  相似文献   

18.
The development of a phytophagous insect depends on the nutritional characteristics of plants on which it feeds. Offspring from different females, however, may vary in their ability to develop in different host species and therefore females should place their eggs on host plants that result in the highest performance for the insect offspring. Causes underlying the predicted relationships between host selection and offspring performance may be: (1) a genetic association between larval ability to exploit particular hosts and the female insect's host preference; and (2) phenotypic plasticity of larvae that may be due to (a) maternal effects (e.g. differential investment in eggs) or (b) diet. In this work, we analyse the performance (i.e. hatching success and larval size and mortality) of the pine processionary (Thaumetopoea pityocampa) caterpillar developing in Aleppo (Pinus halepensis) or maritime (Pinus pinaster) pines. Larvae of this moth species do not move from the individual pine selected by the mother for oviposition. By means of cross-fostering experiments of eggs batches and silk nests of larvae between these two pine species, we explored whether phenotypic plasticity of offspring traits or genetic correlations between mother and offspring traits account for variation in developmental characteristics of caterpillars. Our results showed that females preferentially selected Aleppo pine for oviposition. Moreover, the offspring had the highest probability of survival and reached a larger body size in this pine species independently of whether or not batches were experimentally cross-fostered. Notably, the interaction between identity of donor and receiver pine species of larvae nests explained a significant proportion of variance of larval size and mortality, suggesting a role of diet-induced phenotypic plasticity of the hatchlings. These results suggest that both female selection of the more appropriate pine species and phenotypic plasticity of larva explain the performance of pine processionary caterpillars.  相似文献   

19.
Trait-mediated interactions: influence of prey size, density and experience   总被引:1,自引:0,他引:1  
1. The role of non-consumptive predator effects in structuring ecological communities has become an important area of study for ecologists. Numerous studies have shown that adaptive changes in prey in response to a predator can improve survival in subsequent encounters with that predator. 2. Prey-mediated changes in the shapes of predators' functional response surfaces determine the qualitative predictions of theoretical models. However, few studies have quantified the effects of adaptive prey responses on the shape of predator functional responses. 3. This study explores how prey density, size and previous predator experience interact to change the functional response curves of different-sized predators. 4. We use a response surface design to determine how previous exposure to small or large odonate predators affected the short-term survival of squirrel tree frog (Hyla squirella) tadpoles across a range of sizes and densities (i.e. the shape of odonate functional response curves). 5. Predator-induced tadpoles in a given size class did not differ in shape, although induction changed tadpole behaviour significantly. Induced tadpoles survived better in lethal encounters with either predator than did similar-sized predator-naive tadpoles. 6. Induction by either predator resulted in increased survival with both predators at a given size. However, different mechanisms led to increased survival for induced tadpoles. Attack rate for the small predators, whereas handling time increased for the large predators.  相似文献   

20.
Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had the opposite effects. The increase in plant height under the low R/FR ratio was accompanied by a reduction in the number of leaves. Population differences in growth form resembled the differences between plants grown in different light environments: plants from the shade population had rosettes with long erect leaves, whereas plants from the sun population formed prostrate rosettes with short leaves. Plants from the shade population were more responsive to the R/FR ratio than plants from the sun population: the increases in leaf length, plant height, and leaf area ratio under a low R/FR ratio were larger in the shade population. However, differences in plasticity were small compared to the population difference in growth form itself. We argue that plants do not respond optimally to shading and that developmental constraints might have limited the evolution of an optimal response. Received: 8 December 1996 / Accepted: 31 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号