首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant growth promoting rhizobacteria (PGPR) can enhance plant growth by alleviating soil stresses. Although previously investigated, some new interesting details are presented regarding the alleviating affects of Azospirillum sp. on wheat growth under drought stress in this research work. We hypothesized that the isolated strains of Azospirillum sp. may alleviate the adverse effects of drought stress on wheat (Triticum aestivum L.) growth. Three different strains of Azospirillum lipoferum (B1, B2 and B3) were used to inoculate wheat seedlings under drought. During the flowering stage the seedlings were subjected to three drought levels with five different time longevity, including control. Pots were water stressed at 80% (S0), 50% (S1) and 25% (S2) of field capacity moisture in a 25 day-period. Soil and plant water properties including water potential and water content, along with their effects on bacterial inoculum and wheat growth, were completely monitored during the experiment. While stress intensity significantly affected bacterial population and wheat growth, stress longevity only affected wheat water potential and water content. Compared to uninoculated treatments strain B3 (fixing and producing the highest amounts of N and auxin, respectively, with P solubilizing and ACC-deaminase activities) increased wheat yield at S1 and S2 by 43 and 109%, respectively. However, strain B2 (producing siderophore) was the most resistant strain under drought stress. The results of this experiment may elucidate the more efficient strains of Azospirillum sp. for wheat inoculation under drought stress and the mechanisms by which they alleviate the stress.  相似文献   

2.
Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth‐promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress‐related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col‐0 and aba2‐1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro‐grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild‐type Col‐0 and on the mutant aba2‐1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col‐0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.  相似文献   

3.
Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.  相似文献   

4.
One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.  相似文献   

5.
汪堃  南丽丽  师尚礼  郭全恩 《生态学报》2021,41(19):7735-7742
为明确干旱胁迫对根茎型清水紫花苜蓿、直根型陇东紫花苜蓿、根蘖型公农4号杂花苜蓿根系生长及根际土壤细菌群落的影响,采用盆栽试验,运用16S rRNA基因测序技术,研究了幼苗期干旱胁迫下各根型苜蓿根系生长及根际土壤细菌群落结构的变化。结果表明:干旱胁迫下各根型苜蓿的Chao1和ACE丰富度指数均在中度胁迫下最大,Simpson和Shannon-wiener多样性指数各处理间差异不显著;根际土壤细菌群落均以变形菌门、绿弯菌门、类杆菌门、放线菌门和厚壁菌门为主,干旱胁迫均显著增加了变形菌门和厚壁菌门的相对丰度,显著降低了绿弯菌门的相对丰度,但类杆菌门和放线菌门先提高后下降。统计学分析显示,幼苗期干旱胁迫显著影响各根型苜蓿生长发育,随胁迫程度增加,其株高、地上生物量、地下生物量、根系活力、根体积、根系总长均显著降低,根冠比先增加后下降且在中度胁迫时达到最大值。重度胁迫下,清水苜蓿的株高、根系活力显著大于其他品种,而根冠比、根系干重显著小于其他品种;陇东苜蓿的根长、根尖数均显著大于其他品种;根系平均直径、根系总表面积各根型苜蓿间差异不显著。研究结果为植物的抗干旱胁迫以及提高各根型苜蓿在干旱胁迫下的水分利用提供参考。  相似文献   

6.
Azosprilla were collected in wheat fields from subtropical and temperate soils of central Nepal at various elevations. Different wheat cultivars responded positively and significantly in grain yield, grain N-yield, and total N-yield in plant shoots to the inoculation with Nepalese isolate Azospirillum 10SW. Nepalese wheat cv. Seto responded significantly better with Azospirillum 10SW than with the Brasilian isolate A. lipoferum Sp 108 st, a strain which was found highly efficient in earlier experiments with German wheat cultivars, especially cv. Turbo. Yield of Turbo was increased by inoculations of both Azospirillum strains too, but it showed no significant differences depending from the inoculum used. The higher efficacy of combining Azospirillum 10SW and Seto, both collected from the same locality, indicates the possibility of improved associations using traditional cultivars and local bacteria. ei]{gnR O D}{fnDixon}  相似文献   

7.
Medicago sativa L. cv. Longzhong is a nutritious forage plant in dryland regions of the Loess Plateau with strong drought tolerance and broad adaptability. To understand the adaptation mechanism of alfalfa (M. sativa L. cv. Longzhong) to drought stress, growth, and physiological parameters including levels of chlorophyll content, osmotic adjustment, reactive oxygen species (ROS), and antioxidant enzymes and antioxidants were measured under simulated levels of drought (? 0.40, ? 0.80, ? 1.20, ? 1.60, and ? 2.00 MPa). The changes in M. sativa L. cv. Longzhong were compared with those of plants of M. sativa L. cv. Longdong control (Variety I) suited to moderate rainfall areas and M. sativa L. cv. Gannong No. 3 (Variety II) suited to irrigated areas. The results showed that root–shoot ratio, the chlorophyll (a + b) and osmolytes contents, the degree of lipid peroxidation and ROS production, and the levels of antioxidative enzymes and antioxidants increased significantly with increasing drought stress, whereas plant height, aboveground biomass, chlorophyll a/b ratio, leaf water potential (Ψ1), and relative water content (RWC) decreased in response to drought. The Longzhong variety responded early to beginning drought stress (between 0 and ? 0.4 MPa) compared with the controls. Under drought stress (between ? 0.4 and ? 2.0 MPa), the Longzhong variety had significantly higher belowground biomass, root–shoot ratio, Ψ1, RWC, catalase (CAT) activity and reduced glutathione content than those of Varieties I and II, but hydrogen peroxide and hydroxyl free radical (OH·) contents were significantly lower. Step regression analysis showed that OH·, CAT, malondialdehyde, superoxide anion-free radical (O 2 ·? ), and superoxide dismutase of Longzhong had the most marked response to drought stress. In conclusion, the stronger drought tolerance of the Longzhong variety might be due to its higher water-holding capacity, root–shoot ratio, and ability to coordinate enzymatic and non-enzymatic antioxidant systems, which coordinate the peroxidation and oxidative systems.  相似文献   

8.
The present investigation has been performed to evaluate nitrate reductase (NR) and nitrogenase activities as well as growth and mineral nutrition of wheat plants grown under drought stress and inoculated with different Azospirillum strains (NR and NR+). Fresh, dry mass and water content decreased with decreasing soil moisture content, which was accompanied with low soluble sugars and soluble protein content and increase in the total amino acids content. Azospirillum inoculation with either bacterial strain (NR and NR+) significantly increased the above characteristics even at 40 % moisture content. NR activity decreased in both the shoots and roots by decreasing soil moisture content. NR+ strain exhibited increased root NR activity compared with uninoculated plants or inoculated with NR strain. However, plants inoculated with NRstrain increased NR activity in the shoot more than in the root of the same plant and in the shoot of control plants. Inoculation with either NR and NR+ Azospirillum strains gave higher nitrogenase activity than uninoculated control plants. The low N supply (0.5 mM) did not affect nitrogenase activity. NRstrain was less effective than NR+strain in promoting total N-yield, spike numbers and their mass per pot. Azospirillum inoculation exhibited no significant changes in wheat Mg2+ content. However, K+ and Ca2+ have shown significantly increased values. Azospirillum beneficial effect on plant N balance and growth are most probably composed of multiple mechanisms and beneficial NR is one of them. The importance of Azospirillum NR+strains for increasing wheat resistance to water stress is also supported by the obtained data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The effects of root colonization by the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith on nutritional, growth, and reproductive attributes of two tropical maize cultivars with different sensitivities to drought were studied. Freshly regenerated seeds of selection cycles 0 (cv. C0, drought-sensitive) and 8 (cv. C8, drought-resistant) of the lowland tropical maize population "Tuxpeño sequía" were used in this greenhouse experiment. Maize plants were subjected to drought stress for 3 weeks following tasselling (75–95 days after sowing) and rewatered for the subsequent 5 weeks until harvest. Mycorrhizal (M+) plants had significantly higher uptake of N, P, K, Mg, Mn, and Zn into grain than non-mycorrhizal (M–) plants under drought conditions. AM inoculation also produced significantly greater shoot masses in C0 and C8 regardless of the drought-stress treatment. In the sensitive cultivar C0, drought stress reduced the shoot mass and grain yield by 23% and 55%, respectively, when roots were not colonized, while the reductions were only 12% and 31%, respectively, with mycorrhizal association. In addition, the emergence of tassels and silks was earlier in M+ plants than in M– plants under drought conditions. Mycorrhizal response was more pronounced under both well-watered and drought conditions in C0 than in the C8 cultivar. The overall results suggest that AM inoculation affects host plant nutritional status and growth and thereby alters the reproductive behaviour of maize under drought conditions.  相似文献   

10.
Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the mechanisms underlying the synergistic responses of the symbiotic partners to drought stress are largely unknown. A split-root experiment was designed to investigate the molecular interactions between a host plant and an AM fungus (AMF) under drought stress. In the two-compartment cultivation system, an entire or only a half root system of a maize plant was inoculated with an AMF, Rhizophagus intraradices, in the presence of localized or systemic drought treatment. Plant physiological parameters including growth, water status, and phosphorus concentration, and the expression of drought tolerance-related genes in both roots and R. intraradices were recorded. Although mycorrhizal inoculation in either one or both compartments systemically decreased abscisic acid (ABA) content in the whole root system subjected to systemic or local drought stress, we observed local and/or systemic AM effects on root physiological traits and the expression of functional genes in both roots and R. intraradices. Interestingly, the simultaneous increase in the expression of plant genes encoding D-myo-inositol-3-phosphate synthase (IPS) and 14-3-3-like protein GF14 (14-3GF), which were responsible for ABA signal transduction, was found to be involved in the activation of 14-3-3 protein and aquaporins (GintAQPF1 and GintAQPF2) in R. intraradices. These findings suggest that coexpression of IPS and 14-3GF is responsible for the crosstalk between maize and R. intraradices under drought stress, and potentially induces the synergistic actions of the symbiotic partners in enhancing plant drought tolerance.  相似文献   

11.
The effect of two Azospirillum strains (SP-7, Dol) was compared on root proton efflux and root enlargement of three wheat cultivars (Ghods, Omid and Roshan). Root colonization varied greatly among strain–plant combinations. Inoculation enhanced proton efflux and root elongation of wheat roots but this effect was directly dependent on the strain–plant combination. Strain SP-7 stimulated the greatest proton efflux and root elongation in cv. Roshan, whereas strain Dol induced the best effect on both these phenomena in cv. Ghods. Based on positive correlation between these two phenomena, it was suggests that proton efflux is related to increasing of root length by Azospirillum inoculation. The number of bacteria of both Azospirillum strains in root of cv. Omid was less than the other cultivars. Proton extrusion and root elongation of cv. Omid failed to respond significantly with these two strains. This may be due to incompatible host-strain combination. Thus compatible strains are necessary for increasing of proton efflux and root extension in wheat cultivars.  相似文献   

12.
A sustainable alternative to improve yield and the nutritive value of forage is the use of plant growth-promoting bacteria (PGPB) that release nutrients, synthesize plant hormones and protect against phytopathogens (among other mechanisms). Azospirillum genus is considered an important PGPB, due to the beneficial effects observed when inoculated in several plants. The aim of this study was to evaluate the diversity of new Azospirillum isolates and select bacteria according to the plant growth promotion ability in three forage species from the Brazilian Pantanal floodplain: Axonopus purpusii, Hymenachne amplexicaulis and Mesosetum chaseae. The identification of bacterial isolates was performed using specific primers for Azospirillum in PCR reactions and partial sequencing of the 16S rRNA and nifH genes. The isolates were evaluated in vitro considering biological nitrogen fixation (BNF) and indole-3-acetic acid (IAA) production. Based on the results of BNF and IAA, selected isolates and two reference strains were tested by inoculation. At 31 days after planting the plant height, shoot dry matter, shoot protein content and root volume were evaluated. All isolates were able to fix nitrogen and produce IAA, with values ranging from 25.86 to 51.26 mg N mL?1 and 107–1038 µmol L?1, respectively. The inoculation of H. amplexicaulis and A. purpusii increased root volume and shoot dry matter. There were positive effects of Azospirillum inoculation on Mesosetum chaseae regarding plant height, shoot dry matter and root volume. Isolates MAY1, MAY3 and MAY12 were considered promising for subsequent inoculation studies in field conditions.  相似文献   

13.
Drought stress is a key environmental factor limiting the growth and productivity of plants. Turfgrasses are often affected by drought in north China due to water shortage. In the present study, the impact of nanosized compost either alone or in combination with drought tolerant isolates from compost on turfgrass response to drought was investigated. Municipal solid waste (MSW) compost was processed into nanosized particles and added in turfgrass soil. Microorganisms in the MSW compost were screened for drought stress tolerance using increasing concentrations of polyethylene glycol (PEG 6000). Festuca arundinacea Schreb. plants were inoculated with this mixture and exposed to drought stress by reducing the amount of water added at vegetative growth stage. The drought-tolerant isolates from compost were identified as Bacillus cereus, Lysinibacillus sp. and Rhodotorula glutinis. Our results revealed that nanocompost and microbial inoculation minimized the drought stress-imposed effects significantly increasing shoot biomass, root biomass, and chlorophyll content. Similarly, nanocompost-treated and inoculated seedlings showed higher levels of antioxidant enzymes and lower MDA content compared to nontreated control under drought stress. The combination of nano-sized compost and microbial inoculation were more efficient than nanocompost alone in terms of influencing growth and physiological status of the seedlings under drought stress. Our data suggest that nanocompost combined with drought-tolerant isolates may enhance drought tolerance in turfgrass by promoting plant growth and increasing the capacity to eliminate toxic reactive oxygen species (ROS).  相似文献   

14.
The ascomycetous dark septate endophytic (DSE) fungi characterized by their melanized hyphae can confer abiotic stress tolerance in their associated plants in addition to improving plant growth and health. In this study inoculation of the DSE fungus Nectria haematococca Berk. & Broome significantly improved all the plant growth parameters like the plant height, stem girth, leaf characteristics and plant biomass of drought-stressed tomato. Root characters like the total root length, primary root diameter, 2nd order root number and diameter, root hair number and length were also significantly influenced by the fungal inoculation. Nevertheless, N. haematococca inoculation did not affect root colonization by native arbuscular mycorrhizal (AM) fungi and no significant correlation existed between the AM and DSE fungal variables examined. The proline accumulation in shoots of N. haematococca inoculated plants was significantly higher than uninoculated plants. The present study clearly indicates for the first time the ability of the DSE fungus, N. haematococca in inducing the drought stress tolerance and promoting the growth of the host plant under water stress.  相似文献   

15.
The effect of cellulase and pectinase on bacterial colonization of wheat was studied by three different experiments. In the first experiment, the root colonization of 3 wheat cultivars (Ghods, Roshan and Omid) by two A. brasilense strains (Sp7 and Dol) was compared using pre-treated roots with cellulase and pectinase, and non-treated with these enzymes (control). Although the root colonization varied greatly among strain-plant combinations in controls, the pre-treatment of roots with polysaccharide degrading enzymes significantly increased the bacterial count in roots, regardless of the strain-plant combination. This might be an indication that cell wall may act as an important factor in plant-Azospirillum interaction. In the second experiment, the root cellulase activity of the same wheat cultivars treated with and without the two Azospirillum brasilense, strains (Sp7 and Dol) was compared. The pre-treatment of wheat roots with Azospirillum enhanced the cellulase activity of wheat root extracts. Thus, the cellulase activity might participate in the initial colonization of wheat roots by Azospirillum. The comparison of the cellulase activity of root extracts within inoculated and non-inoculated seedlings showed that the inoculation had enhanced the cellulase activity in root extracts, but this effect was directly dependent on the strain-plant combination. Strain Sp7 stimulated the highest cellulase activity in cv. Roshan, but strain Dol induced the highest enzyme activity in cv. Ghods. In the third experiment, several growth parameters of those 3 wheat cultivars treated with and without those two bacterial strains (Sp7 and Dol) were compared. The highest magnitude of growth responses caused by Sp7 strain was in the cv Roshan, but Dol strain stimulated the highest growth in cv Ghods. Therefore, effective colonization may contribute to more growth responses.  相似文献   

16.
Mixed cultures of several Azospirillum and Rhizobium trifolii strains caused either an inhibition or stimulation of nodule formation on plant hosts as compared with nodulation of plants inoculated with R. trifolii alone. Azospirillum strains affected the nodulation process at a precise cell ratio (R. trifolii/Azospirillum cells) and time of inoculation. All Azospirillum strains used showed a variation in their ability to inhibit or enhance nodulation by R. trifolii strains. When nonviable cell preparations of Azospirillum strains were used for mixing experiments, no effect on nodulation was observed. A decrease in the effectiveness of normally Nod+ Fix+R. trifolii strains was observed when an Azospirillum strain caused an increase in nodule number.  相似文献   

17.
Drought can alter plant quality and the strength of trophic interactions between herbivore groups, and is likely to increase in occurrence and severity under climate change. We hypothesized that changes in plant chemistry due to root herbivory and drought stress would affect the performance of a generalist and a specialist aphid species feeding on a Brassica plant. High drought stress increased the negative effect of root herbivory on the performance of both aphid species (30 % decrease in fecundity and 15 % reduction in intrinsic rate of increase). Aphid performance was greatest at moderate drought stress, though the two species differed in which treatment combination maximized performance. Nitrogen concentration was greatest in high and moderately drought-stressed plants without root herbivores and moderately drought-stressed plants under low root herbivore density, and correlated positively with aphid fecundity for both species. Glucosinolate concentrations increased 62 % under combined drought stress and root herbivory, and were positively correlated with extended aphid development time. Root herbivory did not influence relative water content and foliar biomass under normal water regimes but they decreased 24 and 63 %, respectively, under high drought stress. This study shows that drought can alter the strength of interactions between foliar and root herbivores, and that plant chemistry is key in mediating such interactions. The two aphid species responded in a broadly similar way to root herbivore and drought-stress treatments, which suggests that generalized predictions of the effects of abiotic factors on interactions between above- and below-ground species may be possible.  相似文献   

18.
Abscisic acid (ABA) is an important signaling molecule for plants under drought tolerance. However, ABA itself has many limitations to be used in agriculture practically. Recently, AM1 (ABA-mimicking ligand) has been found to replace ABA. In this study, we have investigated AM1’s potential role for drought tolerance by growing two contrasting rapeseed (Brassica napus L.) genotypes: Qinyou 8 (drought sensitive) and Q2 (drought resistant) with exogenous ABA or AM1 application under well-watered and drought-stressed conditions. Results demonstrate that drought stress has hampered plant growth (relative height growth rate, plant biomass, leaf area), plant water status (leaf relative water content, root moisture content, leaf water potential), photosynthetic gas exchange attributes like net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (E); chlorophyll fluorescence parameters like photosynthetic efficiency (Fv/Fm), effective quantum yield of PSII (Φ PSII ), photochemical quenching coefficient (qL), electron transport rate (ETR) and chlorophyll content, especially for Qinyou 8 significantly compared to well-watered plants. Whereas increased root/shoot ratio (R/S), water use efficiency (WUE) and non-photochemical quenching (NPQ) was recorded in both genotypes under drought stress. On the other hand, exogenous ABA or AM1 treatment has regulated all the above parameters in a rational way to avoid drought stress. Chloroplast transmission electron microscope images, especially for Qinyou8, have revealed that oxidative stress induced by drought has blurred the grana thylakoids, increased the size or number of plastoglobules due to lipid peroxidation, and the presence of starch granules depict weak capacity to convert them into simple sugars for osmotic adjustment. However, intact grana thylakoid, few plastoglobules with no or very few starch granules were observed in the chloroplast from ABA- or AM1-treated plants under drought. More importantly, AM1-treated plants under drought stress have responded in an extremely similar way like ABA-treated ones. Finally, it is suggested that AM1 is a potential ABA substitute for plant drought tolerance.  相似文献   

19.
Endophytic bacterial strains SF2 (99.9% homology with Achromobacter xylosoxidans), and SF3 and SF4 (99.9% homology with Bacillus pumilus) isolated from sunflower grown under irrigation or drought were selected on the basis of plant growth-promoting bacteria (PGPB) characteristics. Aims of the study were to examine effects of inoculation with SF2, SF3, and SF4 on sunflower cultivated under water stress, to evaluate salicylic acid (SA) production by these strains in control medium or at Ψa = ?2.03 MPa, and to analyze effects of exogenously applied SA, jasmonic acid (JA), bacterial pellets, and bacterial supernatants on growth of pathogenic fungi Alternaria sp., Sclerotinia sp., and Verticillum sp. Growth response to bacterial inoculation was studied in two inbred lines (water stress-sensitive B59 and water stress-tolerant B71) and commercial hybrid Paraiso 24. Under both water stress and normal conditions, plant growth following inoculation was more strongly enhanced for Paraiso 24 and B71 than for B59. All three strains produced SA in control medium; levels for SF3 and SF4 were higher than for SF2. SA production was dramatically higher at Ψa = ?2.03 MPa. Exogenously applied SA or JA caused a significant reduction of growth for Sclerotinia and a lesser reduction for Alternaria and Verticillum. Fungal growth was more strongly inhibited by bacterial pellets than by bacterial supernatants. Our findings indicate that these endophytic bacteria enhance growth of sunflower seedlings under water stress, produce SA, and inhibit growth of pathogenic fungi. These characteristics are useful for formulation of inoculants to improve growth and yield of sunflower crops.  相似文献   

20.

Background and Aims

Plants growing on serpentine bedrock have to cope with the unique soil chemistry and often also low water-holding capacity. As plant-soil interactions are substantially modified by arbuscular mycorrhizal (AM) symbiosis, we hypothesise that drought tolerance of serpentine plants is enhanced by AM fungi (AMF).

Methods

We conducted a pot experiment combining four levels of drought stress and three AMF inoculation treatments, using serpentine Knautia arvensis (Dipsacaceae) plants as a model.

Results

AMF inoculation improved plant growth and increased phosphorus uptake. The diminishing water supply caused a gradual decrease in plant growth, accompanied by increasing concentrations of drought stress markers (proline, abscisic acid) in root tissues. Mycorrhizal growth dependence and phosphorus uptake benefit increased with drought intensity, and the alleviating effect of AMF on plant drought stress was also indicated by lower proline accumulation.

Conclusions

We documented the role of AM symbiosis in plant drought tolerance under serpentine conditions. However, the potential of AMF to alleviate drought stress was limited beyond a certain threshold, as indicated by a steep decline in mycorrhizal growth dependence and phosphorus uptake benefit and a concomitant rise in proline concentrations in the roots of mycorrhizal plants at the highest drought intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号