首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the G-CSF receptor (G-CSFR) in patients with severe congenital neutropenia (SCN) are postulated to contribute to transformation to acute myelogenous leukemia (AML). These mutations result in defective receptor internalization and sustained cellular activation, suggesting a loss of negative signaling by the G-CSFR. In this paper we investigated the roles of SHIP and cytokine-inducible Src homology 2 protein (CIS) in down-modulating G-CSFR signals and demonstrate that loss of their recruitment as a consequence of receptor mutations leads to aberrant signaling. We show that SHIP binds to phosphopeptides corresponding to Tyr744 and Tyr764 in the G-CSFR and that Tyr764 is required for in vivo phosphorylation of SHIP and the formation of SHIP/Shc complexes. Cells expressing a G-CSFR form lacking Tyr764 exhibited hypersensitivity to G-CSF and enhanced proliferation, but to a lesser degree than observed with the most common mutant G-CSFR form in patients with SCN/AML, prompting us to investigate whether suppressor of cytokine signaling proteins also down-modulate G-CSFR signals. G-CSF was found to induce the expression of CIS and of CIS bound to phosphopeptides corresponding to Tyr729 and Tyr744 of the G-CSFR. The expression of CIS was prolonged in cells with the SCN/AML mutant G-CSFR lacking Tyr729 and Tyr744, which also correlated with increased G-CSFR expression. These findings suggest that SHIP and CIS interact with distal phosphotyrosine residues in the G-CSFR to negatively regulate G-CSFR signaling by limiting proliferation and modulating surface expression of the G-CSFR, respectively. Novel therapeutic approaches targeting inhibitory pathways that limit G-CSFR signaling may have promise in the treatment of patients with SCN/AML.  相似文献   

2.
3.
Recent studies have shown that point mutations in granulocyte colony-stimulating factor receptor (G-CSFR) are involved in the pathogenesis of severe congenital neutropenia (SCN) and in the transformation of SCN to acute myelogenous leukemia (AML). It is reasonably speculated that the abnormalities in the signal transduction pathways for G-CSF could be partly responsible for the pathogenesis and the development to AML in patients with myelodysplastic syndromes (MDS). Therefore, we investigated the structural and functional abnormalities of the G-CSFR in 14 patients with MDS and 10 normal subjects. In in vitro colony forming assay, MDS samples showed reduced response to growth factors. However, G-CSF, but not GM-CSF and IL-3, enhanced clonal growth in three cases of high risk patients with MDS (RAEB, RAEB-t, and MDS having progressed to acute myeloid leukemia (AML)) and one low risk patient (RA). Eight out of 14 patients including above 4 patients demonstrated a common deletion of the G-CSFR cDNA; a deletion of three nucleotides (2128-2130) in the juxtamembrane domain of the G-CSFR, which resulted in a conversion of Asn(630)Arg(631) to Lys(630). To assess the functional activities of this deletion in the G-CSFR isoform, a mutant with the same three-nucleotide deletion was constructed by site-directed mutagenesis. FDCP-2 cells expressing the G-CSFR isoform responded to G-CSF, and exhibited proliferative responses than did those cells having wild-type G-CSFR. Moreover, these isoforms showed prolonged activation of STAT3 in response to G-CSF than did the wild-type. These results suggest that the deletion in the juxtamembrane domain of the G-CSFR gives a growth advantage to abnormal MDS clones and may contribute to the pathogenesis of MDS.  相似文献   

4.
The granulocyte colony-stimulating factor receptor (G-CSFR) regulates the proliferation, differentiation and survival of neutrophilic progenitor cells. In these studies, we introduced mutant G-CSFRs with cytoplasmic domains truncated approximately every 30 amino acids from the C-terminus into interleukin-3 (IL-3)-dependent myeloid LGM-1 cells. The G-CSFR membrane proximal region containing the Box 2 homology sequence was determined to be critical for proliferative signaling, as well as for activation of Janus kinase (JAK2) and p44/42 mitogen-activated protein kinase (MAPK) following G-CSF stimulation. In the presence of increasing concentrations of JAK2 or p44/42 MAPK inhibitors, LGM-1 cells expressing the full-length G-CSFR exhibited a decreased capacity to proliferate in response to G-CSF. These results demonstrate that JAK2 and p44/42 MAPK activation is involved in proliferative signaling through the G-CSFR membrane proximal region containing the Box 2 homology sequence.  相似文献   

5.
It is recognized that both wild-type and mutant CFTR proteins undergo ubiquitination at multiple lysines in the proteins and in one or more subcellular locations. We hypothesized that ubiquitin is added to specific sites in wild-type CFTR to stabilize it and at other sites to signal for proteolysis. Mass spectrometric analysis of wild-type CFTR identified ubiquitinated lysines 68, 710, 716, 1041, and 1080. We demonstrate that the ubiquitinated K710, K716, and K1041 residues stabilize wild-type CFTR, protecting it from proteolysis. The polyubiquitin linkage is predominantly K63. N-tail mutants, K14R and K68R, lead to increased mature band C CFTR, which can be augmented by proteasomal (but not lysosomal) inhibition, allowing trafficking to the surface. The amount of CFTR in the K1041R mutant was drastically reduced and consisted of bands A/B, suggesting that the site in transmembrane 10 (TM10) was critical to further processing beyond the proteasome. The K1218R mutant increases total and cell surface CFTR, which is further accumulated by proteasomal and lysosomal inhibition. Thus, ubiquitination at residue 1218 may destabilize wild-type CFTR in both the endoplasmic reticulum (ER) and recycling pools. Small molecules targeting the region of residue 1218 to block ubiquitination or to preserving structure at residues 710 to 716 might be protein sparing for some forms of cystic fibrosis.  相似文献   

6.
《The Journal of cell biology》1993,120(6):1481-1489
To investigate the role of the G-CSF receptor (G-CSFR) in mediating the action of G-CSF, WEHI-3B D+ murine myelomonocytic leukemia cells were transfected with a plasmid containing the murine G-CSFR gene. Overexpression of G-CSFR in transfected clones was demonstrated by northern blotting, binding of [125I]rhG-CSF and cross-linking experiments. A high level of expression of the G-CSFR did not promote or suppress cellular proliferation or initiate differentiation; however, exposure of transfected cells to G-CSF in suspension culture caused a large percentage of the population to enter a differentiation pathway, as determined by two markers of the mature state, the ability of cells to reduce nitroblue tetrazolium (NBT) and to express the differentiation antigen Mac-1 (CD11b) on the cell surface. Thus, upon treatment with 10 ng/ml of G-CSF, 60% or more of transfected cells exhibited NBT positivity; whereas, in contrast, nontransfected cells exhibited only 6% NBT positivity in response to G-CSF. An eightfold increase in Mac-1 expression over that of the parental line was also observed in transfected cells exposed to G-CSF. The growth rate of the transfected clones was decreased by exposure to G-CSF, presumably due to terminal differentiation. The findings suggest that the predominant function of G-CSF and its receptor in WEHI-3B D+ cells is to mediate differentiation and that the level of the G-CSFR portion of the signal transduction mechanism in this malignant cell line is important for a response to the maturation inducing function of the cytokine.  相似文献   

7.
A Yoshikawa  H Murakami    S Nagata 《The EMBO journal》1995,14(21):5288-5296
The receptor for granulocyte colony-stimulating factor (G-CSFR) is a hemopoietic growth factor receptor, which mediates proliferation and differentiation signals. The cytoplasmic region of G-CSFR carries four tyrosine residues in its C-terminal half. We constructed mutant receptors in which each tyrosine residue of G-CSFR was mutated to phenylalanine. Two mutant receptors (Tyr703 and Tyr728) neither transduced the growth-inhibitory signal nor induced the neutrophil-specific myeloperoxidase (MPO) gene. The Tyr703 mutant did not induce morphological changes in cells, whereas transformants expressing the Tyr728 mutant adhered to plates with a macrophage-like morphology upon G-CSF stimulation. Mutation of the most distal tyrosine residue (Tyr763) abolished the ability of G-CSFR to stimulate the tyrosine phosphorylation of a cellular protein with an M(r) of 54 kDa. These results indicated that the regions around the three tyrosine residues of G-CSFR play essential and distinct roles in signal transduction.  相似文献   

8.
Precise regulation of Notch signaling activity is critical for development of many different tissues. Here, we show that the zebrafish insertional mutation Hi904 attenuates Notch signaling, and is allelic to mind bomb. We show that Mind bomb protein displays E3 ubiquitin ligase activity in vitro and that it is associated with Delta and enhances its ubiquitination and internalization in transfected cells. Furthermore, by functional analysis of three conserved regions of Mind bomb, we show that the N-terminal half is required for Delta association, the ankyrin repeats are important for Delta internalization, and the ring fingers are required for Delta ubiquitination. Thus, the three functionally distinct modules of Mind bomb work cooperatively to regulate Notch signaling by associating with, ubiquitinating, and internalizing Delta.  相似文献   

9.
Ubiquitination of cytokine receptors controls intracellular receptor routing and signal duration, but the underlying molecular determinants are unclear. The suppressor of cytokine signaling protein SOCS3 drives lysosomal degradation of the granulocyte colony-stimulating factor receptor (G-CSFR), depending on SOCS3-mediated ubiquitination of a specific lysine located in a conserved juxtamembrane motif. Here, we show that, despite ubiquitination of other lysines, positioning of a lysine within the membrane-proximal region is indispensable for this process. Neither reallocation of the motif nor fusion of ubiquitin to the C-terminus of the G-CSFR could drive lysosomal routing. However, within this region, the lysine could be shifted 12 amino acids toward the C-terminus without losing its function, arguing against the existence of a linear sorting motif and demonstrating that positioning of the lysine relative to the SOCS3 docking site is flexible. G-CSFR ubiquitination peaked after endocytosis, was inhibited by methyl-β-cyclodextrin as well as hyperosmotic sucrose and severely reduced in internalization-defective G-CSFR mutants, indicating that ubiquitination mainly occurs at endosomes. Apart from elucidating structural and spatio-temporal aspects of SOCS3-mediated ubiquitination, these findings have implications for the abnormal signaling function of G-CSFR mutants found in severe congenital neutropenia, a hematopoietic disorder with a high leukemia risk.  相似文献   

10.
Role of the proteasome in modulating native G-CSFR expression   总被引:1,自引:0,他引:1  
The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis, but the mechanisms controlling its surface expression are poorly understood. Recent studies using transfected cell lines have suggested the activated G-CSFR is routed to the lysosome and not the proteasome. Here, we examined the role of the ubiquitin/proteasome system in regulating G-CSFR surface expression in both ts20 cells that have a temperature-sensitive E1 ubiquitin-activating enzyme and in primary human neutrophils. We show that the G-CSFR is constitutively ubiquitinated, which increases following ligand binding. In the absence of a functional E1 enzyme, ligand-induced internalization of the receptor is inhibited. Pre-treatment of ts20 transfectants with either chloroquine or MG132 inhibited ligand-induced G-CSFR degradation, suggesting a role for both lysosomes and proteasomes in regulating G-CSFR surface expression in this cell line. In neutrophils, inhibition of the proteasome but not the lysosome was found to inhibit internalization/degradation of the activated G-CSFR. Collectively, these data demonstrate the requirement for a functional ubiquitin/proteasome system in G-CSFR internalization and degradation. Our results suggest a prominent role for the proteasome in physiologic modulation of the G-CSFR, and provide further evidence for the importance of the ubiquitin/proteasome system in the initiation of negative signaling by cytokine receptors.  相似文献   

11.
Arachidonic acid, a dietary cis-polyunsaturated fatty acid, stimulates adhesion and migration of human cancer cells on the extracellular matrix by activation of intracellular signaling pathways. Polyubiquitin chains bearing linkages through different lysine residues convey distinct structural and functional information that is important for signal transduction. We investigated whether ubiquitination was required for arachidonic acid-induced cellular adhesion and migration of MDA-MB-435 cells on collagen type IV. An E1 (ubiquitin-activating enzyme) inhibitor, PYR-431, completely abrogated arachidonic acid-stimulated adhesion. Additionally, expression of a lysine null mutant ubiquitin prevented activation of cellular adhesion. Cells expressing ubiquitin in which lysine 63 (K63) was mutated to arginine (K63R) were unable to adhere to collagen upon exposure to arachidonic acid. When K63 was the only lysine present, the cells retained the ability to adhere, indicating that K63-linked ubiquitin is both necessary and sufficient. Moreover, K63-linked ubiquitin was required for the induction of cell migration by arachidonic acid. The ubiquitin mutants and PYR-431 did not prevent arachidonic acid-induced phosphorylation of TGF-β activated kinase-1 (TAK1) and p38 MAPK, suggesting K63-linked ubiquitination occurs downstream of MAPK. These novel findings are the first to demonstrate a role for K63-linked ubiquitination in promoting cell adhesion and migration.  相似文献   

12.
Delta ligands are important for regulating Notch signaling through transcellular stimulation of Notch receptors. The cytoplasmic tails of Delta ligands have multiple potential regulatory sites including several lysine residues that are putative targets for ubiquitination by the E3 ubiquitin ligases, Mind Bomb and Neuralized. To identify possible roles for specific lysine residues in the cytoplasmic tail of the Notch ligand Dll1 a mutational and functional analysis was performed. Examination of a panel of individual or clustered lysine mutants demonstrated that lysine 613 (K613) in the cytoplasmic tail of Dll1 is a key residue necessary for transcellular activation of Notch signaling. Multi-ubiquitination of the Dll1 mutant Dll1-K613R was altered compared to wild type Dll1, and the K613R mutation blocked the ability of Dll1 to interact with Notch1. Finally, mutation of K613 did not affect the stability of Dll1 or its ability to traffic to recycle to the plasma membrane, but did enhance the fraction associated with lipid rafts. Collectively these results suggest that the transcellular defect in Notch signaling attributed to residue K613 in cytoplasmic tail of Dll1 may result from altering its multi-ubiquitination and increasing its retention in lipid rafts.  相似文献   

13.
14.
Granulocyte colony-stimulating factor (G-CSF) is a major regulator of granulopoiesis on engagement with the G-CSF receptor (G-CSFR). The truncated, alternatively spliced, class IV G-CSFR (G-CSFRIV) has been associated with defective differentiation and relapse risk in pediatric acute myeloid leukemia (AML) patients. However, the detailed biological properties of G-CSFRIV in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and the potential leukemogenic mechanism of this receptor remain poorly understood. In the present study, we observed that G-CSFRIV–overexpressing (G-CSFRIV+) HSPCs demonstrated an enhanced proliferative and survival capacity on G-CSF stimulation. Cell cycle analyses showed a higher frequency of G-CSFRIV+ cells in the S and G2/M phase. Also, apoptosis rates were significantly lower in G-CSFRIV+ HSPCs. These findings were shown to be associated with a sustained Stat5 activation and elevated miR-155 expression. In addition, G-CSF showed to further induce G-CSFRIV and miR-155 expression of peripheral blood mononuclear cells isolated from AML patients. A Stat5 pharmacological inhibitor or ribonucleic acid (RNA) interference–mediated silencing of the expression of miR-155 abrogated the aberrant proliferative capacity of the G-CSFRIV+ HSPCs. Hence, the dysregulation of Stat5/miR-155 pathway in the G-CSFRIV+ HSPCs supports their leukemogenic potential. Specific miRNA silencing or the inhibition of Stat5-associated pathways might contribute to preventing the risk of leukemogenesis in G-CSFRIV+ HSPCs. This study may promote the development of a personalized effective antileukemia therapy, in particular for the patients exhibiting higher expression levels of G-CSFRIV, and further highlights the necessity of pre-screening the patients for G-CSFR isoforms expression patterns before G-CSF administration.  相似文献   

15.
Angiotensin II type 1a (AT1a), vasopressin V2, and neurokinin 1 (NK1) receptors are seven-transmembrane receptors (7TMRs) that bind and co-internalize with the multifunctional adaptor protein, beta-arrestin. These receptors also lead to robust and persistent activation of extracellular-signal regulated kinase 1/2 (ERK1/2) localized on endosomes. Recently, the co-trafficking of receptor-beta-arrestin complexes to endosomes was demonstrated to require stable beta-arrestin ubiquitination (Shenoy, S. K., and Lefkowitz, R. J. (2003) J. Biol. Chem. 278, 14498-14506). We now report that lysines at positions 11 and 12 in beta-arrestin2 are specific and required sites for its AngII-mediated sustained ubiquitination. Thus, upon AngII stimulation the mutant beta-arrestin2(K11,12R) is only transiently ubiquitinated, does not form stable endocytic complexes with the AT1aR, and is impaired in scaffolding-activated ERK1/2. Fusion of a ubiquitin moiety in-frame to beta-arrestin2(K11,12R) restores AngII-mediated trafficking and signaling. Wild type beta-arrestin2 and beta-arrestin2(K11R,K12R)-Ub, but not beta-arrestin2(K11R,K12R), prevent nuclear translocation of pERK. These findings imply that sustained beta-arrestin ubiquitination not only directs co-trafficking of receptor-beta-arrestin complexes but also orchestrates the targeting of "7TMR signalosomes" to microcompartments within the cell. Surprisingly, binding of beta-arrestin2(K11R,K12R) to V2R and NK1R is indistinguishable from that of wild type beta-arrestin2. Moreover, ubiquitination patterns and ERK scaffolding of beta-arrestin2(K11,12R) are unimpaired with respect to V2R stimulation. In contrast, a quintuple lysine mutant (beta-arrestin2(K18R,K107R,K108R,K207R,K296R)) is impaired in endosomal trafficking in response to V2R but not AT1aR stimulation. Our findings delineate a novel regulatory mechanism for 7TMR signaling, dictated by the ubiquitination of beta-arrestin on specific lysines that become accessible for modification due to the specific receptor-bound conformational states of beta-arrestin2.  相似文献   

16.
Cyclophilin A (CypA) is a peptidyl-prolyl cis/trans isomerase that interacts with the matrix protein (M1) of influenza A virus (IAV) and restricts virus replication by regulating the ubiquitin–proteasome-mediated degradation of M1. However,the mechanism by which CypA regulates M1 ubiquitination remains unknown. In this study, we reported that E3 ubiquitin ligase AIP4 promoted K48-linked ubiquitination of M1 at K102 and K104, and accelerated ubiquitin–proteasome-mediated degradation of M1. The recombinant IAV with mutant M1 (K102 R/K104 R) could not be rescued, suggesting that the ubiquitination of M1 at K102/K104 was essential for IAV replication. Furthermore, CypA inhibited AIP4-mediated M1 ubiquitination by impairing the interaction between AIP4 and M1. More importantly, both the mutations of M1 (K102 R/K104 R) and CypA inhibited the nuclear export of M1, indicating that CypA regulates the cellular localization of M1 via inhibition of AIP4-mediated M1 ubiquitination at K102 and K104, which results in the reduced replication of IAV.Collectively, our findings reveal a novel ubiquitination-based mechanism by which CypA regulates the replication of IAV.  相似文献   

17.
《Cellular signalling》2014,26(12):2749-2756
PTEN is post-translationally modified by ubiquitin via association with multiple E3 ubiquitin ligases, including NEDD4-1, XIAP, and WWP2. Despite the rapid progress made in researching the impact of ubiquitination on PTEN function, our understanding remains fragmented. Building on the previously observed interaction between SIPL1 and PTEN, we report here that SIPL1 promotes PTEN polyubiquitination via lysine 48 (K48)-independent polyubiquitin chains. Substitution of the K48 residue of ubiquitin with arginine (R) enhanced SIPL1-mediated PTEN polyubiquitination. In contrast, the K63R substitution significantly reduced it. The ubiquitin-like (UBL) domain is required for SIPL1-induced PTEN polyubiquitination. This post-translational modification promoted the association of SIPL1 with PTEN. Elevated amounts of the SIPL1/PTEN complex were precipitated in 293T cells co-transfected with PTEN, SIPL1, and ubiquitin compared to cells co-transfected with SIPL1 and PTEN only. Additionally, formation of the SIPL1/PTEN complex was inhibited when either lysine-less (K0) ubiquitin or K63R ubiquitin was co-transfected together with SIPL1 + PTEN. The PTEN component in the SIPL1/PTEN complex contained polyubiquitin chains. The ubiquitination reaction may play a structural role, stabilizing the SIPL1/PTEN complex, as a ubiquitin binding-defective SIPL1 mutant (TFLV) is proficient in PTEN association. Collectively, we demonstrate that SIPL1 binds PTEN and enhances PTEN polyubiquitination which in turn promotes the interaction between SIPL1 and PTEN.  相似文献   

18.
The interplay between DSL proteins and ubiquitin ligases in Notch signaling   总被引:16,自引:0,他引:16  
Lateral inhibition is a pattern refining process that generates single neural precursors from a field of equipotent cells and is mediated via Notch signaling. Of the two Notch ligands Delta and Serrate, only the former was thought to participate in this process. We now show that macrochaete lateral inhibition involves both Delta and Serrate. In this context, Serrate interacts with Neuralized, a ubiquitin ligase that was heretofore thought to act only on Delta. Neuralized physically associates with Serrate and stimulates its endocytosis and signaling activity. We also characterize a mutation in mib1, a Drosophila homolog of mind bomb, another Delta-targeting ubiquitin ligase from zebrafish. Mib1 affects the signaling activity of Delta and Serrate in both lateral inhibition and wing dorsoventral boundary formation. Simultaneous absence of neuralized and mib1 completely abolishes Notch signaling in both aforementioned contexts, making it likely that ubiquitination is a prerequisite for Delta/Serrate signaling.  相似文献   

19.
Covalent attachment of ubiquitin is well-known to target proteins for degradation. Here, mass spectrometry was used to identify the site of ubiquitination in Gpa1, the G protein alpha subunit in yeast Saccharomyces cerevisiae. The modified residue is located at Lys165 within the alpha-helical domain of Galpha, a region of unknown function. Substitution of Lys165 with Arg (Gpa1(K165R)) results in a substantial decrease in ubiquitination. In addition, yeast expressing the Gpa1(K165R) mutant are moderately resistant to pheromone in growth inhibition assays-a phenotype consistent with enhanced Galpha signaling activity. These findings indicate that the alpha-helical domain may serve to regulate the turnover of Gpa1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号