首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used mesocosms to analyze predation impacts on the prey populations and prey community structures by two cyclopoid copepod species, the larger Mesocyclops pehpeiensis and the smaller Thermocyclops taihokuensis, who coexist with small-sized herbivorous zooplankton species in a fish-abundant lake. The overall predation impact on the prey populations was stronger for Mesocyclops than for Thermocyclops. Mesocyclops had a strong and less selective impact on the rotifer community but a selective impact on the crustaceans. In contrast, Thermocyclops had a selective predation impact on rotifers but a weak and less selective impact on the crustacean community. As a result, the former predator reduced the diversity of the crustacean community but not the rotifer community, while the latter had an opposite impact on the diversities of the two communities. It has been suggested that fish induce development of a zooplankton community dominated by the small-sized zooplankton species in fish-abundant lakes. Our results demonstrated that cyclopoid copepods altered species composition and diversity of the small-sized zooplankton community in such lakes. Thus, the results have given an important suggestion on the role of the invertebrate predator cyclopoid copepods, which often coexist with fish, that they determine population dynamics and community structures of small-sized zooplankton in fish-abundant lakes.  相似文献   

2.
1. Decades of introductions of exotic sportfish to mountain lakes around the world have impoverished them biologically, and this may be exacerbated by global warming. We assessed the current status of invasive salmonids and native zooplankton communities in 34 naturally fishless lakes along an elevational gradient, which served as an environmental proxy for the expected effects of climate change. 2. Our main goal was to explore how climate‐related variables influence the effects of stocked salmonids on the total biomass, species richness and taxonomic composition of zooplankton. We predicted that warmer conditions would dampen the negative predatory effects of exotic brook trout (Salvelinus fontinalis) on zooplankton communities because more temperate lakes contain a greater diversity of potentially tolerant species. 3. Instead, we discovered that the persistence of stocked brook trout in the warmer lakes significantly amplified total zooplankton biomass and species richness. In colder and deeper lakes, zooplankton were relatively unaffected by S. fontinalis, which however persisted better in alpine lakes than at lower elevations after stocking practices were halted over two decades ago. Warmer lake conditions and higher concentrations of dissolved organic carbon (DOC) were significant primary drivers of zooplankton species turnover, both favouring greater species diversity. 4. Our findings of an ecological surprise involving potential synergistic positive effects of climate warming and exotic trout on native zooplankton communities presents a conundrum for managers of certain national mountain parks. Present mandates to eradicate non‐native trout and return the mountain lakes to their naturally fishless state may conflict with efforts to conserve biodiversity under a rapidly changing climate.  相似文献   

3.
Global warming increasingly pressures species to show adaptive migratory responses. We hypothesized that warming increases invasion of alpine lakes by low-elevation montane zooplankton by suppressing native competitors and predators. This hypothesis was tested by conducting a two-factor experiment, consisting of a warming treatment (13 vs. 20°C) crossed with three invasion levels (alpine only, alpine+montane, montane only), in growth chambers over a 28-day period. Warming significantly reduced total consumer biomass owing to the decline of large alpine species, resulting in greater autotrophic abundance. Significant temperature-invasion interactions occurred as warming suppressed alpine zooplankton, while stimulating certain imported species. Herbivorous invaders suppressed functionally similar alpine species while larger native omnivores reduced invasion by smaller taxa. Warming did not affect total invader biomass because imported species thrived under ambient and warmed alpine conditions. Our findings suggest that the adaptability of remote alpine lake communities to global warming is limited by species dispersal from lower valleys, or possibly nearby warmer alpine ponds.  相似文献   

4.
A study of the diet of native brown trout (Salmo trutta) parr and introduced European minnow (Phoxinus phoxinus) in the subalpine lake, Øvre Heimdalsvatn, showed that the two species had considerable dietary overlap, both in the littoral zone and in the outlet of the lake. Chironomidae constituted a substantial proportion of the diet of the two species in both habitats. The results indicated that both zooplankton (Cladocera) and large macroinvertebrates (EPT-species) made up a higher proportion of the minnow diet in the early phase of the minnow establishment (1975–1977) than later, and that the significance of small macroinvertebrates (Chironomidae) as prey has increased during the same period. Dietary analysis of the sympatric brown trout and minnow population in Øvre Heimdalsvatn does not provide a definitive conclusion about the degree of competition between the two species. However, together with the findings in other studies in Øvre Heimdalsvatn that have documented reduced recruitment and individual growth of brown trout, decreased individual growth of minnows and a marked decline in the density of large crustaceans (Lepidurus arcticus and Gammarus lacustris) in the shallow littoral of the lake during the last decades indicates that competitive interactions between the two species are likely. This is probably an example of the competition between two fish species with a high degree of dietary overlap when living in sympatry, most likely caused by absence of alternative prey and alternative habitats due to the high predation risk for both brown trout parr and minnows in deeper parts and in the open waters of the lake.  相似文献   

5.
1. The scale of investigations influences the interpretation of results. Here, we investigate the influence of fish and nutrients on biotic communities in shallow lakes, using studies at two different scales: (i) within‐lake experimental manipulation and (ii) comparative, among‐lake relationships. 2. At both scales, fish predation had an overriding influence on macroinvertebrates; fish reduced macroinvertebrate biomass and altered community composition. Prey selection appeared to be size based. Fish influenced zooplankton abundance and light penetration through the water column also, but there was no indication that fish caused increased resuspension of sediment. 3. There were effects of nutrients at both scales, but these effects differed with the scale of the investigation. Nutrients increased phytoplankton and periphyton at the within‐lake scale, and were associated with increased periphyton at the among‐lake scale. No significant effect of nutrients on macroinvertebrates was observed at the within‐lake scale. However, at the among‐lake scale, nutrients positively influenced the biomass and density of macroinvertebrates, and ameliorated the effect of fish on macroinvertebrates. 4. Increased prey availability at higher nutrient concentrations would be expected to cause changes in the fish community. However, at the among‐lake scale, differences were not apparent in fish biomass among lakes with different nutrient conditions, suggesting that stochastic events influence the fish community in these small and relatively isolated shallow lakes. 5. The intensity of predation by fish significantly influences macroinvertebrate community structure of shallow lakes, but nutrients also play a role. The scale of investigation influences the ability to detect the influence of nutrients on the different components of shallow lake communities, particularly for longer lived organisms such as macroinvertebrates, where the response takes longer to manifest.  相似文献   

6.
Bighorn Lake, a fishless alpine lake, was stocked with nonnative brook trout, Salvelinus fontinalis, in 1965 and 1966. The newly introduced trout rapidly eliminated the large crustaceans Hesperodiaptomus arcticus and Daphnia middendorffiana from the plankton. In July 1997, we began to remove the fish using gill nets. The population comprised 261 fish that averaged 214 g in wet weight and 273 mm in fork length. Thereafter, zooplankton abundance increased within weeks. Early increases were caused by the maturation of Diacyclops bicuspidatus, few of which reached copepodid stages before the removal of the fish because of fish predation. Daphnia middendorffiana, absent when fish were present, reappeared in 1998. Hesperodiaptomus arcticus, which had been eliminated by the stocked fish, did not return. The proportion of large zooplankton increased after fish removal, but their overall biomass did not change. Algal biomass was low and variable throughout the 1990s and correlated with water temperature but not with nutrient concentrations or grazer densities. Diatoms were the most abundant algal taxon in the lake, followed by Dinophyceae. Chrysophyceans and cryptophyceans were eliminated after the fish were removed. Chlorophyll a concentrations were unaffected. Gill netting is a viable fish eradication technique for smaller (less than 10 ha), shallow (less than 10 m deep) lakes that lack habitable inflows and outflows or other sensitive species. Further work is required to define appropriate removal methods for larger lakes and watersheds. Received 30 May 2000; Accepted 14 November 2000.  相似文献   

7.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

8.
Studies on zooplankton in two acidified high mountain lakes in the Alps   总被引:2,自引:2,他引:0  
P. Cammarano  M. Manca 《Hydrobiologia》1997,356(1-3):97-109
Being located in remote areas, alpine lakes are good indicators of regional and global pollution, and are particularly sensitive to atmospheric depositions. When situated in areas where acidic rocks dominate, they are sensitive to acidification. In the framework of an international project partially funded by the EU, a two-year study on zooplankton was carried out on two lakes, Lake Paione Inferiore (LPI) and Lake Paione Superiore (LPS), selected because of their susceptibility to acidification. In particular, LPS is permanently acidified, with pH ranging between 5.3 and 6.2, and LPI is acidified during the ice melt, when pH drops to 6.1 units. In addition, LPI is subjected to further anthropogenic interference, since fish (Onchorynchus mykiss) have been repeatedly introduced into the lake during the last thirty years. Literature information is available on the species composition and the seasonal dynamics of the zooplankton communities of the two lakes before these anthropogenic disturbances took place. Previously, the two lakes had a similar species composition and abundant zooplankton. An analysis of the present-day situation reveals significant changes compared to the past. Both acidification and the introduction of fish are responsible for the marked alterations observed. By reconstructing of the past cladocera assemblages and by analysing the literature on lakes with different impacts of the two factors (pH and fish), we can estimate the relative importance of the two different anthropogenic disturbances on species composition and abundance of the zooplankton communities of the two lakes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Although it is well known that predatory Chaoborus Lichtenstein 1800 larvae have a strong negative impact on zooplankton populations in many Holarctic lakes, this top‐down control is still not entirely clear in the Neotropics. In Lake Carioca, a Brazilian monomictic lake, chaoborids became one of the main zooplankton predators after the depletion of planktivorous fish by non‐native piscivorous fish. The aim of this research was to test the hypothesis that Chaoborus spp. larvae control the density of their prey populations. Enclosures simulated conditions with higher (Pr+) and lower (Pr?) predatory Chaoborus spp. larva densities over 30 days in two periods (stratification and mixing). Our results indicated that the dominant copepod species was affected only in the stratification period when its population was smaller. In this circumstance, predated individuals were probably not replaced in the same proportion by reproductive output of the smaller population. Rotifers were not sensitive to changes in chaoborids densities in both periods. The lack of a strong top‐down effect recorded by our mesocosm experiments emphasises the importance of continuing to investigate the ecological roles played by this invertebrate predator in aquatic food webs and if its ability to regulate the zooplankton in most Holarctic lakes can (or cannot) be widely generalised to Neotropical communities. Such a result also suggests that alternative research approaches, besides in‐situ experiments, may be necessary to better clarify this topic. Specifically for cladocerans, parallel paleolimnological analyses in Lake Carioca have supported the idea of a possible negative impact of Chaoborus larvae on bosminids after the introduction of non‐native piscivorous fishes. Abstract in Portuguese is available with online material.  相似文献   

10.
11.
《Acta Oecologica》2002,23(3):155-163
Frequent dispersal events are expected to elevate local species richness in island-like habitats such as lakes. However, the importance of dispersal can be hard to evaluate if other factors cause large background variability in species composition and richness. In this paper, we review empirical studies on ecological factors known or expected to influence species richness in zooplankton communities of inland lakes. We then present summaries of two recent case studies. Our objectives are twofold: we first look for effects of biotic interactions on species richness and species composition, and then evaluate whether the expected effects of dispersal are likely to be detected on a background of large variability caused by other ecological factors and interactions. Species richness within lakes appears to be primarily controlled by factors related to lake size, lake productivity, water quality, and fish predation levels. One case study indicated a slight, but significant, positive effect of lake density and lake area in the surrounding landscape on species richness, suggesting that frequent dispersal events may enhance species richness. This local variation in species richness is superimposed on regional variation in species pools.  相似文献   

12.
13.
To assess the relative importance of lake chemistry, morphometry and zoogeography on limnetic zooplankton, we collected zooplankton, water, and morphometric data from 132 headwater Canadian Shield lakes in 6 regions across north-central Ontario. A subset of these lakes (n = 52) were fished with gill nets. We clustered lakes based on their zooplankton species composition (presence/absence). Discriminant analysis was employed to determine how well lake characteristics could predict zooplankton community types. Correct classification of zooplankton communities for three models ranged from 72 to 91%. Lake size, lake location, and buffering capacity were ranked as the most important factors separating lake groups. Fish abundance (CPUE) was not significant in distinguishing between zooplankton communities. Though the range of lake sizes was limited (1–110 ha), larger lakes tended to support more species. Lake location (zoogeography) also influenced species composition patterns. Although Algoma lakes tended to be larger (\-x = 18.0 ha, other lakes \-x = 2.5 ha), they supported relatively depauperate zooplankton communities. Buffering capacity was ranked third in the discriminant analysis models, but pH and alkalinity were not significantly different between lake groups.  相似文献   

14.
The relative strength of "top-down" versus "bottom-up" control of plankton community structure and biomass in two small oligotrophic lakes (with and without fish), located near the Polar circle (Russia), has been investigated for two years, 1996 and 1997. The comparative analyses of zooplankton biomass and species abundance showed strong negative effect of fish, stickeback (Pungitius pungitius L.), on the zooplankton community species, size structure and biomass of particular prey species but no effect on the biomass of the whole trophic level. An intensive predation in Verkhneye lake has lead to: 1) sixfold decline in biomass of large cladoceran Holopedium gibberum comparing to the lake lacking predator, 2) shift in the size mode in zooplankton community and the replacement of the typical large grazers by small species--Bosmina longirostris and rotifers. Their abundance and biomass even increased, demonstrating the stimulating effect of fish on the "inefficient" and unprofitable prey organisms. The analysis of contributions of different factors into the cladoceran's birth rate changes was applied to demonstrate the relative impact of predators and resources on zooplankton abundance. An occasional introduction of the stickleback to Vodoprovodnoye lake (the reference lake in 1996) in summer 1997 lead to drastic canges in this ecosystem: devastating decrease of zooplankton biomass and complete elimination of five previously dominant grazer species. The abundance of edible phytoplankton was slightly higher in the lake with fish in 1996 and considerably higher in the lake where fish has appeared in 1997 showing the prevailing "top-down" control of phytoplankton in oligotrophic ecosystem. The reasons of trophic cascade appearance in oligotrophic lakes are also discussed.  相似文献   

15.
We estimated the effects of Bythotrephes longimanus invasion on the trophic position (TP) of zooplankton communities and lake herring, Coregonus artedi. Temporal changes in lacustrine zooplankton communities following Bythotrephes invasion were contrasted with non-invaded reference lakes, and along with published information on zooplankton and herring diets, formed the basis of estimated changes in TP. The TP of zooplankton communities and lake herring increased significantly following the invasion of Bythotrephes, whereas TP in reference lakes decreased (zooplankton) or did not change significantly (lake herring) over a similar time frame. Elevated TP following Bythotrephes invasion was most prominent in lakes that also supported the glacial relict, Mysis diluvania, suggesting a possible synergistic interaction between these two species on zooplankton community composition. Our analysis indicated that elevated TPs of zooplankton communities and lake herring are not simply due to the presence of Bythotrephes, but rather reflect changes in the zooplankton community induced by Bythotrephes; namely, a major reduction in the proportion of herbivorous cladoceran biomass and a concomitant increase in the proportion of omnivorous and/or predatory copepod biomass in invaded lakes. We demonstrated that increases in TP of the magnitude reported here can lead to substantial increases in fish contaminant concentrations. In light of these results, we discuss potential mechanisms that may be responsible for the disconnect between empirical and theoretical evidence that mid-trophic level species invasions (e.g., Bythotrephes) elevate contaminant burdens of consumer species, and provide testable hypotheses to evaluate these mechanisms.  相似文献   

16.
The structural characteristics of the macroinvertebrate community can effectively reflect the health status of lake ecosystems and the quality of the lake ecological environment. It is therefore important to identify the limiting factors of macroinvertebrate community structure for the maintenance of lake ecosystem health. In this study, the community composition of macroinvertebrate assemblages and their relationships with environmental variables were investigated in 13 small lakes within Lianhuan Lake in northern China. A self‐organizing map and K‐means clustering analysis grouped the macroinvertebrate communities into five groups, and the indicator species reflected the environmental characteristics of each group. Principal component analysis indicated that the classification of the macroinvertebrate communities was affected by environmental variables. The Kruskal–Wallis test results showed that environmental variables (pH, total phosphorus, nitrate, water temperature, dissolved oxygen, conductivity, permanganate index, and ammonium) had a significant effect on the classification of the macroinvertebrate communities. Redundancy analysis showed that mollusks were significantly negatively correlated with pH and chlorophyll a, while annelids and aquatic insects were significantly positively correlated with chlorophyll a and dissolved oxygen. Spearman correlation analysis showed that the species richness and Shannon''s diversity of macroinvertebrates were significantly negatively correlated with total phosphorus, while the biomass of macroinvertebrates was significantly negatively correlated with pH. High alkalinity and lake eutrophication have a serious impact on the macroinvertebrate community. Human disturbances, such as industrial and agricultural runoff, negatively impact the ecological environment and affect macroinvertebrate community structure. Thus, macroinvertebrate community structure should be improved by enhancing the ecological environment and controlling environmental pollution at a watershed scale.  相似文献   

17.

Background  

Introduced species can have profound effects on native species, communities, and ecosystems, and have caused extinctions or declines in native species globally. We examined the evolutionary response of native zooplankton populations to the introduction of non-native salmonids in alpine lakes in the Sierra Nevada of California, USA. We compared morphological and life-history traits in populations of Daphnia with a known history of introduced salmonids and populations that have no history of salmonid introductions.  相似文献   

18.
Variations in climate, watershed characteristics and lake-internal processes often result in a large variability of food-web complexity in lake ecosystems. Some of the largest ranges in these environmental parameters can be found in lakes across the northern Great Plains as they are characterized by extreme gradients in respect to lake morphometry and water chemistry, with individual parameters often varying over several orders of magnitude. To evaluate the effects of environmental conditions on trophic complexity in prairie lake food-webs, we analyzed carbon and nitrogen stable isotopes of fishes, zooplankton and littoral macroinvertebrates in 20 lakes across southern Saskatchewan. Our two-year study identified very diverse patterns of trophic complexity, with was predominantly associated with among-lake differences. Small but significant temporal effects were also detected, which were predominantly associated with changes in productivity. The most influential parameters related to changes in trophic complexity among lakes were salinity, complexity of fish assemblage, and indicators of productivity (e.g. nutrients, Chl a). Generally, trophic diversity, number of trophic levels, and trophic redundancy were highest in productive freshwater lakes with diverse fish communities. Surprisingly, mesosaline lakes that were characterized by very low or no predation pressure from fishes were not colonized by invertebrate predators as it is often the case in boreal systems; instead, trophic complexity was further reduced. Together, prairie lake food-webs appear to be highly sensitive to changes in salinity and the loss of piscivorous fishes, making freshwater and mesosaline lakes most vulnerable to the impacts of climate variability. This is particularly important as global circulation models predict future climate warming to have disproportionate negative impacts on hydrologic conditions in this area.  相似文献   

19.
1. Invasions of top predators may have strong cascading effects in ecosystems affecting both prey species abundance and lower trophic levels. A recently discussed factor that may enhance species invasion is climate change and in this context, we studied the effects of an invasion of northern pike into a subarctic lake ecosystem formerly inhabited by the native top predator Arctic char and its prey fish, ninespined stickleback. 2. Our study demonstrated a strong change in fish community composition from a system with Arctic char as top predator and high densities of sticklebacks to a system with northern pike as top predator and very low densities of sticklebacks. A combination of both predation and competition from pike is the likely cause of the extinction of char. 3. The change in top predator species also cascaded down to primary consumers as both zooplankton and predator‐sensitive macroinvertebrates increased in abundance. 4. Although the pike invasion coincided with increasing summer temperatures in the study area we have no conclusive evidence that the temperature increase is the causal mechanism behind the pike invasion. But still, our study provides possible effects of future pike invasions in mountain lakes related to climate change. We suggest that future pike invasions will have strong effects in lake ecosystems, both by replacing native top consumers and through cascading effects on lower trophic levels.  相似文献   

20.
The introduction of largemouth bass (Micropterus salmoides) and bluegill sunfish (Lepomis macrochirus) into the freshwater ecosystems of Japan has resulted in the suppression and/or replacement of native species, generating considerable concerns among resource managers. The impacts of largemouth bass and bluegill on native fauna have been examined in aquaria and isolated farm ponds, but there is limited work examining the likelihood to fundamentally modifying Japan's lakes. The objective of the present study is to examine the direct and synergistic ecological effects of largemouth bass and bluegill on the biotic communities of Lake Kawahara-oike, Nagasaki, Japan, using an ecosystem (Ecopath) modeling approach. Specifically, we examine whether the two fish species have played a critical role in shaping the trophodynamics of the lake. We attempt to shed light on the trophic interactions between largemouth bass and bluegill and subsequently evaluate to what extent these interactions facilitate their establishment at the expense of native species. We also examine how these changes propagate through the Lake Kawahara-oike food web. Our study suggests that the introduction of bluegill has induced a range of changes at multiple trophic levels. The present analysis also provides evidence that largemouth bass was unable to exert significant top-down control on the growth rates of the bluegill population. Largemouth bass and bluegill appear to prevail over the native fish species populations and can apparently coexist in large numbers in invaded lakes. Future management strategies controlling invasive species are urgently required, if the integrity of native Japanese fish communities is to be protected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号