首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bee populations are exposed to multiple stressors, including land-use change, biological invasions, climate change, and pesticide exposure, that may interact synergistically. We analyze the combined effects of climate warming and sublethal insecticide exposure in the solitary bee Osmia cornuta. Previous Osmia studies show that warm wintering temperatures cause body weight loss, lipid consumption, and fat body depletion. Because the fat body plays a key role in xenobiotic detoxification, we expected that bees exposed to climate warming scenarios would be more sensitive to pesticides. We exposed O. cornuta females to three wintering treatments: current scenario (2007–2012 temperatures), near-future (2021–2050 projected temperatures), and distant-future (2051–2080). Upon emergence in spring, bees were orally exposed to three sublethal doses of an insecticide (Closer, a.i. sulfoxaflor; 0, 4.55 and 11.64 ng a.i./bee). We measured the combined effects of wintering and insecticide exposure on phototactic response, syrup consumption, and longevity. Wintering treatment by itself did not affect winter mortality, but body weight loss increased with increasing wintering temperatures. Similarly, wintering treatment by itself hardly influenced phototactic response or syrup consumption. However, bees wintered at the warmest temperatures had shorter longevity, a strong fecundity predictor in Osmia. Insecticide exposure, especially at the high dose, impaired the ability of bees to respond to light, and resulted in reduced syrup consumption and longevity. The combination of the warmest winter and the high insecticide dose resulted in a 70% longevity decrease. Smaller bees, resulting from smaller pollen–nectar provisions, had shorter longevity suggesting nutritional stress may further compromise fecundity in O. cornuta. Our results show a synergistic interaction between two major drivers of bee declines, and indicate that bees will become more sensitive to pesticides under the current global warming scenario. Our findings have important implications for pesticide regulation and underscore the need to consider multiple stressors to understand bee declines.  相似文献   

2.
Aim Bees are the most important pollinators of flowering plants and essential ecological keystone species contributing to the integrity of most terrestrial ecosystems. Here, we examine the potential impact of climate change on bees’ geographic range in a global biodiversity hotspot. Location South Africa with a focus on the Cape Floristic Region (CFR) diversity hotspot. Methods  Geographic ranges of 12 South African bee species representing dominant distribution types were studied, and the climate change impacts upon bees were examined with A2 and B2 climate scenarios of HadCM3 model, using MaxEnt for species distribution modelling. Results The predicted levels of climate change‐induced impacts on species ranges varied from little shifts and range expansion of 5–50% for two species to substantial range contractions between 32% and 99% in another six species. Four species show considerable range shifts. Bees of the winter rainfall area in the west of South Africa generally have smaller range sizes than in the summer rainfall area and generally show eastward range contractions toward the dry interior. Bee species prevalent in summer rainfall regions show a tendency for a south‐easterly shift in geographic range. Main conclusions The bee fauna of the CFR is identified as the most vulnerable to climate change due to the high level of endemism, the small range sizes and the island‐like isolation of the Mediterranean‐type climate region at the SW tip of Africa. For monitoring climate change impact on bees, we suggest to establish observatories in the coastal plains of the west coast that are predicted to be worst affected and areas where persistence of populations is most likely. Likely impacts of climate change on life history traits of bees (phenology, sociality, bee‐host plant synchronization) are discussed but require further investigation.  相似文献   

3.
Factors associated with agricultural intensification, for example, loss of seminatural vegetation and pesticide use has been shown to adversely affect the bee community. These factors may impact the bee community differently at different landscape scales. The scale dependency is expected to be more pronounced in heterogeneous landscapes. However, the scale‐dependent response of the bee community to drivers of its decline is relatively understudied, especially in the tropics where the agricultural landscape is often heterogeneous. This study looked at effects of agricultural intensification on bee diversity at patch and landscape scales in a tropical agricultural landscape. Wild bees were sampled using 12 permanent pan trap stations. Patch and landscape characteristics were measured within a 100 m (patch scale) and a 500 m (landscape scale) radius of pan trap stations. Information on pesticide input was obtained from farmer surveys. Data on vegetation cover, productivity, and percentage of agricultural and fallow land (FL) were collected using satellite imagery. Intensive areas in a bee‐site network were less specialized in terms of resources to attract rare bee species while the less intensive areas, which supported more rare species, were more vulnerable to disturbance. A combination of patch quality and diversity as well as pesticide use regulates species diversity at the landscape scale (500 m), whereas pesticide quantity drove diversity at the patch scale (100 m). At the landscape scale, specialization of each site in terms of resources for bees increased with increasing patch diversity and FL while at the patch scale specialization declined with increased pesticide use. Bee functional groups responded differentially to landscape characteristics as well as pesticide use. Wood nesting bees were negatively affected by the number of pesticides used but other bee functional groups were not sensitive to pesticides. Synthesis and Applications: Different factors affect wild bee diversity at the scale of landscape and patch in heterogeneous tropical agricultural systems. The differential response of bee functional groups to agricultural intensification underpins the need for guild‐specific management strategies for wild bee conservation. Less intensively farmed areas support more rare species and are vulnerable to disturbance; consequently, these areas should be prioritized for conservation to maintain heterogeneity in the landscape. It is important to conserve and restore seminatural habitats to maintain complexity in the landscapes through participatory processes and to regulate synthetic chemical pesticides in farm operations to conserve the species and functional diversity of wild bees.  相似文献   

4.
5.
蜜蜂尤其是野生蜜蜂对维持生态系统功能、保证粮食安全等方面具有重要的作用。近年来, 野生蜜蜂的栖息地由于天然林减少, 而现营造的又多为纯林, 以及大面积种植单一经济林而遭到了严重破坏和片断化。已有研究表明纯林、油茶(Camellia oleifera)和橡胶树(Hevea brasiliensis)经济林中的野生蜜蜂多样性较低。现代农业中新烟碱类杀虫剂、除草剂的大规模使用, 会对蜜蜂个体发育和行为产生不利影响。城市化进程潜在影响了蜜蜂的群落, 如郊区的蜜蜂平均物种丰富度要明显高于中心商业区; 废水、废气和粉尘对蜜蜂的觅食、生长发育等都具有不利影响; CO2等温室气体导致的气候变暖影响了传粉蜜蜂与植物之间的互利共生关系, 造成时间或功能上的不匹配。综上所述, 我国的环境变化可能已导致中国野生传粉蜜蜂多样性的下降和种群的衰退。我国虽是传粉蜜蜂种质资源大国, 但缺乏种类和分布本底以及长期而有效的监测数据, 缺乏对蜜蜂多样性和种群下降机制的研究。因此亟待开展传粉蜜蜂调查、实施长期监测项目, 为之建立研究网络。并通过积累丰富的相关数据, 开展风险预测和评估, 用于管理和缓解传粉蜜蜂下降所带来的经济及非经济影响。  相似文献   

6.
传粉蜂为作物生产和粮食安全提供重要的生态系统服务。随着农业经济的不断发展,土地利用强度加剧,大量自然或半自然生境已经转变为农业用地。景观均质化和集约化管理导致野生蜂多样性下降,从而威胁到农业可持续生产。本研究以北京市昌平区苹果园为对象,探究景观复杂度(半自然生境比例)、局地管理强度(地表开花植物多样性和土壤全氮)及其交互作用对传粉蜂多样性的影响。结果表明: 共捕获传粉蜂8642头,其中人工蜂5125头,野生蜂分属5科14属49种3517头。传粉蜂多样性对景观复杂度和局地管理强度响应的最优尺度在500 m。样点半径500 m范围内,总传粉蜂和野生蜂多度随周围半自然生境增加均呈显著上升趋势。景观复杂度与开花植物多样性的交互作用对总传粉蜂和野生蜂物种丰富度有显著影响。当景观复杂度较低时(≤29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著正相关;而当景观复杂度较高时(>29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著负相关。此外,人工蜂多度随果园内局地开花植物多样性和土壤全氮增加呈显著升高趋势。土壤全氮与开花植物多样性的交互作用对人工蜂多度有显著影响。当土壤全氮含量较低时(≤1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著正相关;而当土壤全氮含量较高时(>1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著负相关。农业景观中半自然生境比例的增加有利于提高野生蜂多度,而地表开花植物多样性可以促进传粉蜂多样性,但是受到景观尺度(半自然生境比例)和局地尺度(氮肥施用)的影响。因此,农业景观中野生蜂多样性的维持需要综合考虑多尺度因素来制定保护策略。尽可能保留更高比例的耕地仍然是生产的长期需求,而保持中等景观复杂度,增加地表开花植物多样性,减少氮肥施用量将是促进苹果园传粉蜂多样性的有效方式。  相似文献   

7.

Aim

Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small-bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real-world communities over time.

Location

German Alps and pre-alpine forests in south-east Germany.

Methods

We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well-protected elevational gradients (alpine grassland vs. pre-alpine forest), each sampled twice within the last decade.

Results

We detected clear abundance-based upward shifts in bee communities, particularly in cold-adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small-bodied species in low- and mid-elevations along the grassland gradient. Community responses in the pre-alpine forest gradient were only partly consistent with community responses in alpine grasslands.

Main Conclusion

In well-protected temperate mountain regions, small-bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade.  相似文献   

8.
Changes in agricultural practice across Europe and North America have been associated with declines in wild bee populations. Bee diet breadth has been associated with sensitivity to agricultural intensification, but much of this analysis has been conducted at the categorical level of generalist or specialist, and it is not clear to what extent the level of generalisation within generalist species is also associated with species persistence. We used pollen load analysis to quantify the pollen diets of wild solitary bees on 19 farms across southern England, UK. A total of 72 species of solitary bees were recorded, but only 31 species were abundant enough to allow for formal diet characterisation. The results broadly conformed to existing literature with the majority of species polylectic and collecting pollen from a wide range of plants. Pollen load analysis consistently identified pollens from more plant species and families from each bee species than direct observation of their foraging behaviour. After rarefaction to standardise pollen load sample sizes, diet breadth was significantly associated with frequency of occurrence, with more generalist bees present on more farms than less generalist bees. Our results show that the majority of bee species present on farmland in reasonable numbers are widely variable in their pollen choices, but that those with the broadest diet were present on the greatest number of farms. Increasing the diversity of plants included in agri-environment schemes may be necessary to provide a wider range of pollen resources in order to support a diverse bee community on farmland.  相似文献   

9.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

10.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

11.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

12.
Reports of world-wide decline of pollinators, and of bees in particular, raise increasing concerns about maintenance of pollination interactions. While local factors of bee decline are relatively well known and potential mitigation strategies at the landscape scale have been outlined, the regional and continental-scale threats to bee diversity have only been marginally explored. Here we document large-scale spatial patterns for a representative bee subfamily, the determinants of its species richness, and assess major threats to these pollinators. Using a comprehensive global dataset of Colletinae (genera Colletes, also called “polyester” or “cellophane” bees for their underground nests lined with a polyester secretion, and Mourecotelles), a species-rich subfamily whose organismal and physiological ecology is representative of many bees, we measured species richness and endemism on global to continental scales. We explored the relationships between bee species richness and potential environmental stress factors grouped into three categories: contemporary climate, habitat heterogeneity, and anthropogenic pressure. Bees of the subfamily Colletinae demonstrate the reversed latitudinal gradient in species richness and endemism suggested for bees; the highest species richness of Colletinae was found between 30° and 50° latitude in both the northern and southern hemispheres. Centres of endemism largely overlapped with those of species richness. The importance of the Greater Cape Floristic Region, previously identified as a centre of richness and endemism of bees, was confirmed for Colletinae. On the global scale, present-day climate was a significant predictor of species richness as was flowering plant diversity represented by vascular plant species richness and centres of plant diversity. Our main conclusion is that climate change constitutes a potential threat to bee diversity, as does declining diversity of vascular plants. However, a significant overlap between centres of bee richness and plant diversity might increase chances for developing conservation strategies.  相似文献   

13.
Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter‐row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter‐rows or in viticultural landscapes. Inter‐row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi‐quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.  相似文献   

14.
Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.  相似文献   

15.
Agricultural intensification leads to large-scale loss of habitats offering food and nesting sites for bees. This has resulted in a severe decline of wild bee diversity and abundance during the past decades. There is an urgent need for cost-effective conservation measures to mitigate this decline. We analysed the impact of five different high-quality habitats on species richness and abundance of wild bees in a complex landscape of north-western Switzerland at six sites. The five habitat types included 45 plots situated on eight organic farms and were composed of 16 low-input meadows, six low-input pastures, seven herbaceous strips adjacent to hedges, five sown flower strips and eleven organic cereal fields. All of them are financially subsidised by the Swiss agri-environmental scheme. Wild bees were sampled between the end of April and end of August 2014 by using trio-pan traps and complementary sweep netting on these five habitat types. On 45 plots we recorded 3973 bee specimens, belonging to 91 species, 16 of which are red listed, revealing a high bee species richness in the study area. Wild bee species richness and abundance were best explained by habitat type, number of flowering plants and site. A strong relationship of increasing number of flowering plants and bee species richness and abundance was found. Grassland habitats, especially low-input meadows, harboured the highest species richness and abundances. Organic cereal fields showed a potential to conserve bee species relevant to nature conservation (harbouring exclusively two red list species and four rare species). Ordination analysis of the bee communities showed a relative dissimilarity between the habitat types and indicates their complementary effects to benefit the diversity of wild bees. Our results demonstrate that a matrix of low-input habitats are needed to sustain rich assemblages of wild bees in agroecosystems.  相似文献   

16.
Insects provide essential ecological services in both the natural environment and in human-dominated habitats. Because pollinator declines associated with land use change have been reported across the globe, there is great concern that pollinators and the ecosystem services they provide will be negatively affected. This study examines the diversity and abundance of bee pollinators in grasslands in Boulder County, Colorado, USA. Over five years, 5,200 bees were collected in grassland plots with different levels of urbanization. Most of the difference in species composition among three levels of urbanization was due to rare species that may not have been discovered in all plots. Neither the number of species nor their abundance differed significantly among the plot types, although the trend indicated increasing diversity with increasing distance from urbanization. Most notably, measures of urbanization, such as the amount of pavement and development, were not correlated with diversity. The most important factor affecting bee abundance, particularly for ground-nesting bees, was grazing regime. Bee abundance also was positively related to the number of flowering plant species. Other studies of different insects (grasshoppers and butterflies) in these plots showed results similar to ours. In contrast, previous studies on song-birds, raptors, and rodents showed significant differences between urban edge and remote plots in terms of organism abundance and diversity. Together, these results suggest that factors other than the degree of urbanization are important in determining insect abundance and diversity.  相似文献   

17.
All over the world, pollinators are threatened by land‐use change involving degradation of seminatural habitats or conversion into agricultural land. Such disturbance often leads to lowered pollinator abundance and/or diversity, which might reduce crop yield in adjacent agricultural areas. For West Africa, changes in bee communities across disturbance gradients from savanna to agricultural land are mainly unknown. In this study, we monitored for the impact of human disturbance on bee communities in savanna and crop fields. We chose three savanna areas of varying disturbance intensity (low, medium, and high) in the South Sudanian zone of Burkina Faso, based on land‐use/land cover data via Landsat images, and selected nearby cotton and sesame fields. During 21 months covering two rainy and two dry seasons in 2014 and 2015, we captured bees using pan traps. Spatial and temporal patterns of bee species abundance, richness, evenness and community structure were assessed. In total, 35,469 bee specimens were caught on 12 savanna sites and 22 fields, comprising 97 species of 32 genera. Bee abundance was highest at intermediate disturbance in the rainy season. Species richness and evenness did not differ significantly. Bee communities at medium and highly disturbed savanna sites comprised only subsets of those at low disturbed sites. An across‐habitat spillover of bees (mostly abundant social bee species) from savanna into crop fields was observed during the rainy season when crops are mass‐flowering, whereas most savanna plants are not in bloom. Despite disturbance intensification, our findings suggest that wild bee communities can persist in anthropogenic landscapes and that some species even benefitted disproportionally. West African areas of crop production such as for cotton and sesame may serve as important food resources for bee species in times when resources in the savanna are scarce and receive at the same time considerable pollination service.  相似文献   

18.
It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation–soil feedbacks. One fruitful avenue for studying such changing feedbacks is through plant functional traits, as an understanding of these traits may help us to understand and synthesise (1) responses of vegetation (through ‘response traits’ and ‘specific response functions’ of each species) to winter climate and (2) the effects of changing vegetation composition (through ‘effect traits’ and ‘specific effect functions’ of each species) on soil functions. It is the relative correspondence of variation in response and effect traits that will provide useful data on the impacts of winter climate change on carbon and nutrient cycling processes. Here we discuss several examples of how the trait-based, response–effect framework can help scientists to better understand the effects of winter warming on key ecosystem functions in cold biomes. These examples support the view that measuring species for their response and effect traits, and how these traits are linked across species through correspondence of variation in specific response and effects functions, may be a useful approach for teasing out the contribution of changing vegetation composition to winter warming effects on ecosystem functions. This approach will be particularly useful when linked with ecosystem-level measurements of vegetation and process responses to winter warming along natural gradients, over medium time scales in given sites or in response to experimental climate manipulations.  相似文献   

19.
Many short-lived desert organisms remain in diapause during drought. Theoretically, the cues desert species use to continue diapause through drought should differ depending on the availability of critical resources, but the unpredictability and infrequent occurrence of climate extremes and reduced insect activity during such events make empirical tests of this prediction difficult. An intensive study of a diverse bee–plant community through a drought event found that bee specialists of a drought-sensitive host plant were absent in the drought year in contrast to generalist bees and to specialist bees of a drought-insensitive host plant. Different responses of bee species to drought indicate that the diapause cues used by bee species allow them to reliably predict host availability. Species composition of the bee community in drought shifted towards mostly generalist species. However, we predict that more frequent and extended drought, predicted by climate change models for southwest North America, will result in bee communities that are species-poor and dominated by specialist species, as found today in the most arid desert region of North America.  相似文献   

20.
Wildflower strips are a management practice increasingly used to provide floral resources to wild bees in agroecosystems. Yet, despite known spatiotemporal variation in wild bee communities, the degree to which different wildflower strip species consistently support wild bee communities is poorly understood. Additionally, whether such consistency is related to the functional roles wildflower species play (e.g., in supporting diverse, rare, or unique suites of bee species) has not been considered. Over three years and on four diversified farms, we evaluated spatiotemporal variation in wild bee communities and bee-flower interactions in wildflower strips to better understand the roles of flower strip species in supporting bees. We documented spatiotemporal variation in the abundance, richness, and composition of local wild bee communities. Certain wildflower species consistently supported the highest richness of wild bees across years. These wildflower species were regularly core members of the bee-flower interaction network, visited by both generalist and specialist bees. By contrast, wildflower species supporting the most unique suites of bees were variable in this role among farms. In order to select plant species for wildflower strips that consistently support a high diversity of wild bee communities within farm landscapes, it is useful to consider several different functional roles that plants may play. Whereas a handful of wildflower species may be visited by the majority of local wild bee species, achieving support for the remaining, and perhaps rarer, bee species will require planting additional flower species, which may appear redundant until the spatiotemporal variation in wild bee communities is more thoroughly considered. This functional approach to selecting wildflower species for bee conservation efforts is important for making practical recommendations to land managers and for guiding best management practices in different regions and with diverse management goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号