首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Bornean tropical rainforests are among the moistest biomes in the world, they sporadically experience periods of water stress. The observations indicate that these ecosystems tend to have little regulation of water use, despite episodes of relatively severe drought. This water-use behaviour is often referred to as anisohydric behaviour, as opposed to isohydric plants that regulate stomatal movement to prevent hydraulic failure. Although it is generally thought that anisohydric behaviour is an adaptation to more drought-prone habitats, we show that anisohydric plants may also be more favoured than isohydric plants under very moist environments where there is little risk of hydraulic failure. To explore this subject, we examined the advantages of isohydric and anisohydric species as a function of the hydroclimatic environment using a stochastic model of soil moisture and carbon assimilation dynamics parameterized by field observations. The results showed that under very moist conditions, anisohydric species tend to have higher productivity than isohydric plants, despite the fact that the two plant types show almost the same drought-induced mortality. As precipitation decreases, the mortality of anisohydric plants drastically increases whereas that of isohydric plants remains relatively constant and low; in these conditions, isohydric plants surpass anisohydric plants in their productivity.  相似文献   

2.

Aims and background

Root growth creates a gradient in age at both the scale of the single root, from distal to proximal parts, but also at the root system level when young branch roots emerge from the axis or new nodal roots are emitted that may reach same soil domain as older roots. It is known that a number of root functions will vary with root type and root tissue age (e.g. respiration, exudation, ion uptake, root hydraulic conductance, mucilage release…) and so will the resulting rhizosphere properties. The impact of the distribution of root demography with depth, and related functions, on the overall functioning of the root system is fundamental for an integration of processes at the root system scale.

Scope and conclusion

Starting from methods for measuring root demography, we discuss the availability of data related to root age and its spatial distribution, considering plant types (monocot/dicot, perennial/annuals) which may exhibit different patterns. We then give a detailed review of variation of root/rhizosphere properties related to root age, focusing on root water uptake processes. We examine the type of response of certain properties to changes in age and whether a functional relationship can be derived. Integration of changing root properties with age into modelling approaches is shown from 3D models at the single plant scale to approaches at the field scale based on integrated root system age. Functional structural modelling combined with new development in non-invasive imaging of roots show promises for integrating influence of age on root properties, from the local to whole root system scales. However, experimental quantification of these properties, such as hydraulic conductance variation with root age and root types, or impact of mucilage and its degradation products on rhizosphere hydraulic properties, presently lag behind the theoretical developments and increase in computational power.
  相似文献   

3.
Baobab trees are often cited in the literature as water-storing trees, yet few studies have examined this assumption. We assessed the role of stored water in buffering daily water deficits in two species of baobabs (Adansonia rubrostipa Jum. and H. Perrier and Adansonia za Baill.) in a tropical dry forest in Madagascar. We found no lag in the daily onset of sap flow between the base and the crown of the tree. Some night-time sap flow occurred, but this was more consistent with a pattern of seasonal stem water replenishment than with diurnal usage. Intrinsic capacitance of both leaf and stem tissue (0.07-0.08 and 1.1-1.43 MPa(-1), respectively) was high, yet the amount of water that could be withdrawn before turgor loss was small because midday leaf and stem water potentials (WPs) were near the turgor-loss points. Stomatal conductance was high in the daytime but then declined rapidly, suggesting an embolism-avoidance strategy. Although the xylem of distal branches was relatively vulnerable to cavitation (P50: 1.1-1.7 MPa), tight stomatal control and minimum WPs near--1.0 MPa maintained native embolism levels at 30-65%. Stem morphology and anatomy restrict water movement between storage tissues and the conductive pathway, making stored-water usage more appropriate to longer-term water deficits than as a buffer against daily water deficits.  相似文献   

4.
Luca Luiselli   《Acta Oecologica》2001,22(5-6):311-314
Two species of cobras (Naja melanoleuca and Naja nigricollis) are known to occur in south eastern Nigeria, where much of the pristine rainforest surface has been felled in the last thirty years, and where the actual landscape is generally constituted by a mosaic of farmlands, plantations, suburban areas, with a few remnant forest fragments. In this region, Naja nigricollis is currently extending its range, especially by exploiting recently deforested areas. Based on the known general distribution range of this species and on the available literature data, it appears that Naja nigricollis has been colonizing the forested region of south eastern Nigeria, starting from the relatively arid savannas of central Nigeria, where this species aestivates during the driest months. In the forest region, however, snakes do not need to aestivate during the dry season. Nevertheless, whereas Naja melanoleuca has a foraging activity extended all-the-year round, Naja nigricollis reduces feeding rates during the dry months, although it does not suspend above-ground activity in these months. I suggest that rainforest spitting cobras suspend feeding during the dry months because their behaviour is just a ‘ghost’ of their recent past, when they were ‘normal’ spitting cobras of dry savana regions, which were thus constrained to aestivate during the dry season as it is the rule in this species in central and northern Nigeria. The ‘gost-of-the-past hypothesis’ seems to fit well with the ‘invading’ presence of Naja nigricollis in Nigerian areas where they were reported as rare or, even, absent, up to a few decades ago. Other hypotheses are discussed, and rejected.  相似文献   

5.
Primary tropical lowland rainforest in Sabah, Malaysia, has been largely reduced to small to medium-sized, often isolated, forest islands surrounded by a highly altered agricultural landscape. The biodiversity patterns of leaf litter ant communities were monitored in two forest fragments of differing size as well as in a contiguous forest over the course of two years. Species number and diversity in the forest isolates was significantly lower, reaching only 47.5% of the species number collected in the contiguous forest. Species density was also lower, which had led to a thinning of the ant community in the fragments. Community composition was substantially altered in the forest remnants, and an increase of tramp species with smaller fragment size was detected. These results were unexpected and alarming, as the medium-sized forest is with its 42.9 km2 a comparatively large primary forest fragment for Sabah.  相似文献   

6.
Root water uptake is an essential part of tree water relations and plays a crucial role in tree physiological activities. Water resource in deep soil is relatively abundant and can provide plenty of water to trees to guarantee their survival and healthy growth during dry seasons. Thus, a good comprehension of the characteristics and underlying mechanisms of deep soil water uptake and utilization by trees will deepen the understanding of the interaction between trees and the environment, tree survival and growth strategies, coexistence and competition among different species, etc. This knowledge is important in establishing green cultivation schemes for plantations, which depend less on the external water resources input and avoid the adverse effects on the water ecological environment. From existing studies, the characteristics and underlying mechanisms of deep water uptake and utilization by trees are reviewed. Firstly, the definition of deep roots and deep soil is discussed, and 1 m depth is recommended as the average (reference) definition standard in main forest vegetation types except the boreal forest. The reasons for the formation of deep tree roots around the globe were also determined. Secondly, the observed deep soil water uptake characteristics of trees and their influencing factors are summarized. Then, from the aspects of the adjustment of deep root traits and the coordination of hydraulic traits of different organs, the mechanisms of deep water uptake by trees are discussed. For example, the spatial, temporal and efficiency adjustment strategies of deep roots can be used to facilitate the absorption of deep soil water. Finally, some implications of deep soil water uptake for the cultivation of plantations are proposed, such as “for water management in plantations, trees should be induced to moderately utilize some deep soil water and an appropriate irrigation frequency should be selected”, “appropriate mixed planting of different tree species can facilitate the buffering effect of deep soil water storage”, “developing techniques of selecting trees for thinning based on the water uptake depths of different species”, etc. Deficiencies of existing studies and some future research directions were also pointed out. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

7.
8.
Environment and seedling community under isolated trees in pastures are different from those in the open pasture. The effect of the pasture trees on the soil nutrients and on the seedling growth were investigated. Seven isolated trees and eight plots were selected in two pastures of 12-yr and 32-yr old derived from a lowland rain forest with nutrient-rich soil at Los Tuxtlas, Mexico. The soil concentrations of total N, P Bray, K+, Na+, Ca2+ and Mg2+, plus others physical and chemical characteristics, were compared between the pasture trees and the open-pasture. An experiment was done to test the hypothesis that soil from under the pasture trees was better for seedling growth than soil from the open pasture. Seedlings of two native tree species and two domesticated species were grown in soil from the two different sites in a shade-house. The dry weight of the shoot and root/shoot ratio were compared. Only total N, P and Na+ differed slightly in concentrations between the sites, but did not promote more seedling biomass. It seems that the soil at this location is sufficiently nutrient-rich even in the open pastures and over-ride any effect of the pasture trees on nutrient availability.  相似文献   

9.
Spatial pattern of tropical plants is initially generated by limited seed dispersal, but the role of density‐dependent and independent mechanisms as modifiers of these patterns across ontogeny is poorly understood. We investigated whether density‐dependent mortality (DDM) and environmental heterogeneity can drive spatial pattern across the ontogeny of a tree in a seasonally dry tropical climate. We used Moran's I correlograms and spatial analysis by distance indices (SADIE) to assess the spatial patterns of the pre‐ and post‐germinative stages of Cordia oncocalyx (Boraginaceae), an abundant tree endemic in the deciduous thorny woodland in the northeastern Brazilian semiarid region. We also used RDA to analyse the effect of DDM and environmental heterogeneity (measured by microtopography and canopy openness) in the mortality and recruitment. Seeds, seedlings, juveniles and adults showed aggregated spatial patterns; infants and immatures were randomly distributed; adults, seeds and seedlings attracted each other while adult, juveniles and immatures repulsed each other. Infant and seedling mortality rates were related to DDM and the recruitment from infant to juvenile was more influenced by spatial heterogeneity. Attraction was determined by local dispersal; repulsion was related to DDM and environment heterogeneity, which allowed the return to aggregation in adult stage. Together, these results indicated that spatial pattern can change across ontogeny, in which the initial stages are responsive to DDM and the final stages are influenced by spatial heterogeneity.  相似文献   

10.

Questions

Do the assemblages of pollination modes in restored (tree plantings) and secondary (naturally regenerated) forests change in comparison to primary forests, and how do these assemblages relate to species turnover at regional scale?

Location

Southeast region of Brazil.

Methods

We classified tree species found in a total of 40 forest sites (18 primary, 11 restored, 11 secondary) according to pollination mode, based on the literature. We calculated and compared functional dissimilarity distances, amounts of species and accumulated abundance of pollination modes, and functional indices of richness and evenness between forest types.

Results

Functional dissimilarity distances were much smaller than species dissimilarity distances within forest types (mean <20%, >80%, respectively), indicating a small variation in pollination modes between sites. Functional indices of richness and evenness did not differ between forest types. However, significant changes were found in the species and abundance proportions of several pollination modes. Primary forests were characterized by the predominance of generalized insect‐pollinated species, followed by secondary proportions of bee, wind and moth pollination; other pollination modes were underrepresented. In restored forests, reductions were found in generalized insect, moth, wind, fly, pollen‐consuming insect and very‐small insect pollination, whereas the species pollinated by bees and bats more than doubled. Smaller changes were found among secondary forests, including reductions in moth, fly and fig‐wasp pollination, whereas there were incremental changes in bee, beetle, big animal and small insect pollination.

Conclusions

Our results indicate a rather stable assemblage of pollination modes and also high ecological redundancy among trees regardless of the species replacement at the regional scale. Major changes among restored forests are probably in response to larger disturbance effects and/or restoration practices conducted in these sites. In contrast, smaller changes among secondary forests could be in response to smaller disturbance effects and natural selection processes, and also seem to suggest that highly resilient degraded areas are more likely to recuperate their functional diversity through natural regeneration alone. In both cases, however, efforts to recover such patterns should be encouraged to avoid possible negative effects in plant–pollinator interactions.  相似文献   

11.
Sex‐specific foraging behaviour in tropical boobies: does size matter?   总被引:2,自引:0,他引:2  
Sex differences in the foraging behaviour of adults have been observed in a number of sexually size-dimorphic birds, and the usual inference has been that these sex-specific differences are driven primarily by differences in body size. An alternative explanation is that foraging differences result from sex differences unrelated to size, such as sex-specific nutritional requirements. To examine these alternative hypotheses, the foraging behaviour of parents was compared between two sympatric and congeneric species of seabird, the Brown Booby Sula leucogaster , which is highly sexually size-dimorphic (females 38% larger) and the Red-footed Booby S. sula , in which sex differences in body size are less marked (females 15% larger). Using temperature and depth loggers, we found that there were highly significant differences in the foraging trip durations and diving behaviour of male and female Brown Boobies. These sex differences were less marked in Red-footed Boobies. Thus, our interspecies comparison revealed that the magnitude of the difference between the sexes matched the sexual size dimorphism of the species, providing support for the size hypothesis.  相似文献   

12.
13.

Background and Aims

Specific leaf area (SLA), a key element of the ‘worldwide leaf economics spectrum’, is the preferred ‘soft’ plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC?

Methods

SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described.

Key Results

Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility.

Conclusions

Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.  相似文献   

14.
This commentary considers modulation as a factor of potential biological importance in assessment of risk of radiofrequency (RF) energy emitted by communications systems and other technologies. Modulation introduces a spread of frequencies into a carrier waveform, but in nearly all cases this spread is small compared to the frequency of the carrier. Consequently, any nonthermal (field-dependent) biological effects related to modulation must result from interaction mechanisms that are fast enough to produce a response at radiofrequencies. Despite considerable speculation, no such mechanisms have been established. While a variety of modulation-dependent biological effects of RF energy have been reported, few such effects have been independently confirmed. Some widely discussed effects, for example a reported modulation-dependent effect of RF fields on the efflux of calcium from brain tissue, remain controversial with no established biological significance. The lack of understanding of the mechanisms underlying such effects prevents any assessment of their significance for communications signals with complex modulation characteristics. Future research should be directed at confirmation and mechanistic understanding of reported biological effects related to modulation. While modulation should be considered in the design of risk studies involving communications-type signals, it should not compromise other aspects of good study design, such as maintaining adequate statistical power and identifying dose-response relationships.  相似文献   

15.
We explored the relationship between soil processes, estimated through soil respiration (R soil ), and the spatial variation in forest structure, assessed through the distribution of tree size, in order to understand the determinism of spatial variations in R soil in a tropical forest. The influence of tree size was examined using an index (I c ) calculated for each tree as a function of (1) the trunk cross section area and (2) the distance from the measurement point. We investigated the relationships between I c and litterfall, root mass and R soil , respectively. Strong significant relationships were found between I c and both litterfall and root mass. R soil showed a large range of variations over the 1-ha experimental plot, from 1.5 to 12.6 gC m?2 d?1. The best relationship between I c and R soil only explained 17% of the spatial variation in R soil . These results support the assumption that local spatial patterns in litter production and root mass depend on tree distribution in tropical forests. Our study also emphasizes the modest contribution of tree size distribution–which is mainly influenced by the presence of the biggest trees (among the large range size of the inventoried trees greater than 10 cm diameter at 1.30 m above ground level or at 0.5 m above the buttresses)–in explaining spatial variations in R soil .  相似文献   

16.
Wang  Ying  Ji  Hongfei  Wang  Rui  Guo  Shengli 《Plant and Soil》2019,440(1-2):443-456
Plant and Soil - Nitrogen (N) is not only a major regulator of productivity in terrestrial systems but can also be a pollutant. While the effects of fertilizer addition to soil N cycling processes...  相似文献   

17.
18.
19.

Aims

Stable isotopes of oxygen and hydrogen are often used to determine plant water uptake depths. We investigated whether and to what extend soil moisture, clay content, and soil calcium carbonate influences the water isotopic composition.

Methods

In the laboratory, dried soil samples varying in clay content were rewetted with different amounts of water of known isotopic composition. Further, we removed soil carbonate from a subset of samples prior to rewetting. Water was extracted from samples via cryogenic vacuum extraction and analysed by mass spectrometry.

Results

The isotopic composition of extracted soil water was similarly depleted in both 18O and 2H with decreasing soil moisture and increasing clay and carbonate content. Soil carbonate changed the δ18O composition while δ2H was not affected.

Conclusions

Our results indicate that soil carbonate can cause artifacts for 18O isotopic composition of soil water. At low soil moisture and high carbonate content this could lead to conflicting results for δ18O and δ2H in plant water uptake studies.  相似文献   

20.
The d13C values of deciduous and evergreen tree leaves were compared in open and closed- canopy environments throughout a rainy season in Panamá. Newly emerging leaves had higher d13C values than older leaves of all seedlings and trees at all dates sampled. This was apparently not caused by a decline in water use efficiency as leaves develop because instantaneous ci/ca was significantly higher in newly emerging than in expanded leaves on the same twigs of trees in the field as well as on seedlings growing in a controlled, unchanging environment. Higher d13C values in newly emerging leaves occurred across diverse environmental comparisons. For example, leaves emerging during the rainy season had higher d13C values than corresponding mature leaves that had emerged both during the dry season and when water was abundant. The early enrichment in 13C may thus reflect the translocation of carbon to initiate a new leaf. Furthermore, the lack of sensitivity of this enrichment to a microclimate suggests that it might be the result of processes that occur after carbon fixation by Rubisco. Other changes in d13C values as leaves developed may also have resulted from carbon translocation processes. Foliar d13C decreased significantly after most of the leaf biomass of the deciduous Apeiba membranacea had developed. The d13C values of the evergreen Cecropia insignis were lower in the open canopy than in closed-canopy forests at the end of the rainy season. These findings suggest that the d13C values of leaves can yield ecological information about the allocation of carbon within trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号