首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Calculations relating the input of litterfall to litter or forest floor mass in forests generally assume that the forest floor reaches an equilibrium state. Based on this assumption, a decomposition factor (k) can be calculated. In the present paper, this basic assumption is questioned and the implications considered. Data on litterfall and forest floor from blackbutt (Eucalyptus pilularis) regrowth forests and plantations were collated from publications and the authors' studies to evaluate both assumptions and relationships. Blackbutt grows over a wide environmental range but its main distribution is in mild temperate to subtropical conditions. Data were from single‐plot studies, sequential studies and chronosequences in both plantations and native regrowth forests. Stands ranged in age from 3 years to maturity in the case of pure, or almost pure blackbutt stands. The forest floor biomass increased up to 12.3 tha?1 at 33 years of age with no evidence of steady state. Litterfall increased up to 7.8 t ha?1 year?1 and was correlated with crown biomass. Regrowth stands were relatively undisturbed and more than 20 years of age, and litterfall ranged from 4.1 to 11.6 tha?1 year?1 and was correlated with stand basal area. Forest floor mass in regrowth forests was variable between the different aged stands but did not exceed 18 tha?1, and there was no evidence that steady state was achieved. The forest floor mass was related to, and approximately 1.7 times the input of litterfall. Although the assumption of steady state was not valid, a k' factor was estimated that related input to forest floor mass and this was relatively constant across all stands and correlated with generalized environmental data. Although assumptions of forest floor equilibrium cannot be supported for E. pilularis, it still should be possible to predict forest floor mass and decomposition from stand conditions and general environmental data.  相似文献   

2.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

3.
Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630‐ha area of mid‐ and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire‐vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid‐ and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4–6 years, 16 years) and Jeffrey pine–white fir (Abies concolor) (JP‐WF) (5–10 years, 22 years) and longer in high elevation red fir (Abies magnifica)— western white pine (Pinus monticola) (RF‐WWP) forests (9–27 years, 70 years). Median fire return intervals were also shorter on east‐facing (6–9 years, 16.3 years) and longer on south‐ (11 years, 32.5 years) and west‐facing slopes (22–28 years, 54‐years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP‐WF (17.5%) than in RF‐WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid‐ and upper montane forests due to twentieth‐century fire exclusion. Forest density increased in JP and JP‐WF forests and white fir increased in JP‐WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF‐WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre‐settlement role in montane forest dynamics.  相似文献   

4.
ABSTRACT Forest fire is often considered a primary threat to California spotted owls (Strix occidentalis occidentalis) because fire has the potential to rapidly alter owl habitat. We examined effects of fire on 7 radiomarked California spotted owls from 4 territories by quantifying use of habitat for nesting, roosting, and foraging according to severity of burn in and near a 610-km2fire in the southern Sierra Nevada, California, USA, 4 years after fire. Three nests were located in mixed-conifer forests, 2 in areas of moderate-severity burn, and one in an area of low-severity burn, and one nest was located in an unburned area of mixed-conifer-hardwood forest. For roosting during the breeding season, spotted owls selected low-severity burned forest and avoided moderate- and high-severity burned areas; unburned forest was used in proportion with availability. Within 1 km of the center of their foraging areas, spotted owls selected all severities of burned forest and avoided unburned forest. Beyond 1.5 km, there were no discernable differences in use patterns among burn severities. Most owls foraged in high-severity burned forest more than in all other burn categories; high-severity burned forests had greater basal area of snags and higher shrub and herbaceous cover, parameters thought to be associated with increased abundance or accessibility of prey. We recommend that burned forests within 1.5 km of nests or roosts of California spotted owls not be salvage-logged until long-term effects of fire on spotted owls and their prey are understood more fully.  相似文献   

5.
Nitrogen is a limiting resource in many temperate forests and nitrogen-fixing plants are usually limited to the early stages of post-disturbance succession. In fire-dependent Sierra Nevada forests, however, Ceanothus cordulatus is relatively abundant even in old-growth forest conditions which are at least partly maintained by fire. We conducted a field experiment to determine if soil beneath Ceanothus patches represent `resource islands' of available N which persist after fire. Nine plots containing discrete patches of Ceanothus, Arctostaphylos patula (manzanita; chosen as a non N-fixing reference species), and bare forest floor were subjected to either a low-intensity (n=3) or high-intensity (n=3) bum treatment, or remained unburned as controls (n=3). Soil temperatures during the bum were monitored by a network of thermocouples placed at the surface of the mineral soil and at ca. 10 cm depths. Soil samples were collected from the organic horizon, 0-10 cm and 15-25 cm depths within each patch type immediately before burning and 2 days, and 6, and 11 months after. Soil moisture, total C and N, and ammonium and nitrate concentrations were determined in the laboratory. Before the burn, Ceanothus patches were significantly enriched in total and inorganic N in the organic horizon relative to the other patch types. A sharp increase in inorganic N was observed in all patch types and depths immediately following burning, but by 6 months after the burn, Ceanothus patches were significantly enriched relative to the surrounding patch types and remained so at months. Resprouting Ceanothus patches will continue to be an important source of a limiting nutrient in this fire-prone ecosystem.  相似文献   

6.
We studied population sizes and mobility of Erebia epiphron and Erebia sudetica, two high mountain butterflies forming endemic subspecies in the Hrubý Jeseník Mountains, Czech Republic. E. epiphron formed two continuous populations containing 100,000 and 4,500 individuals on alpine grasslands. The butterflies moved freely within their habitats, but movements between the two populations were highly unlikely. E. sudetica formed a system of colonies at timberline sites on valley headwalls and in forest clearings. Two such colonies studied in detail contained 4,500 and 450 adults and were interconnected by limited dispersal. The negative exponential function and the sigmoid function (this assumes flat decrease of movements over short distances) were superior to the inverse power function in fitting mobility data for both species. For E. sudetica, the functions describing movements within a habitat differed significantly from total movements, suggesting different behaviours of dispersing individuals. The habitats of E. epiphron are uniform and highly isolated, favouring free within-habitat mobility but prohibiting leaving their boundaries. The habitats of E. sudetica are diverse and disturbance-dependent; leaving such habitats is less risky, and a source-sink model may explain the persistence of the species in the mountains.  相似文献   

7.
Forest floor is the most important of all forest biogeocenotic components for studying behavior of metals and artificial radionuclides during forest fires. Wide occurrence, active biogeochemical processes caused by constant input of organic matter, and high retentive capacity of airborne metals make forest floor an important biogeochemical barrier that controls migration of metals within forests landscapes. Distribution of metals throughout forest floor and its consumption by fire distinguish a group of metals migrating beyond a burn and help quantify the release.  相似文献   

8.
Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire‐coping strategies among common dry forests plants: resisters (low fire‐induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post‐fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post‐fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited.  相似文献   

9.
We investigated plant species diversity as it related to stand structure and landscape parameters in abandoned coppice forests in a temperate, deciduous forest area of central Japan, where Fagus crenata was originally dominant. The species occurring in the study plots were classified into habitat types based on a statistical analysis of their occurrence bias in particular habitats (e.g., primary forest, coniferous plantation) in the landscape studied. The relationships between stand structure, which reflected the gradient of management, and forest floor plant species diversity (H and J) and richness (number of species per unit area) were not significant. However, these factors did influence the forest floor plant composition of the different types of habitat. According to the multiple regression analysis, species diversity and the richness of forest floor plants was affected by landscape parameters rather than by stand structure. For trees, species richness was mainly affected by the relative dominance of F. crenata, which is one of the stand structure parameters that decreases with intensive management. This is probably because many of the tree species that are characteristic of coppice forests increase after F. crenata have been eliminated by management; these species are not dominant in the original forest, where they are suppressed by F. crenata, the shade-tolerant dominant species. The species diversity (H and J) of trees was positively correlated with some landscape parameters, including the road density around the study plot, which may be associated with the intensity of management activity. The number of disturbance-tolerant species increased with increasing road density. Stand structure mainly affected disturbance-intolerant forest floor plant species and disturbance-tolerant tree species. Thus, the species diversity responses differed between forest floor plants and trees. The impact of forest management on species diversity was more prominent for forest floor plants.  相似文献   

10.
Wildfire severity in forests is projected to increase with warming and drying conditions associated with climate change. Our objective was to determine the impact of wildfire and clearcutting severity on the ectomycorrhizal fungal (EMF) community of Douglas-fir seedlings in the dry forests of interior British Columbia, Canada. We located our study within and surrounding the area of the McLure fire (August 2003). We hypothesized that disturbance would affect EMF community assembly due to reductions in fungal inoculum. Five treatments representing a range of disturbance severities were compared: high severity burn, low severity burn, screefed clearcut (manual removal of forest floor), clearcut, and undisturbed forest. EMF communities in the undisturbed forest were more complex than those in all disturbance treatments. However, aspects of community assembly varied with disturbance type, where the burn treatments had the simplest communities. After 4 months, regenerating seedlings in the burn treatments had the lowest colonization, but seedlings in all treatments were fully colonized within 1 year. EMF communities were similar among the four disturbance types, largely due to dominance of Wilcoxina throughout the study period. However, forest floor retention influenced community assembly as the EMF in the clearcut treatment, where forest floor was retained, had levels of diversity and richness comparable to the undisturbed forest. Overall, the results suggest that increasing forest floor disturbance can alter EMF community assembly in the first year of regeneration. A correlation between poorly colonized seedlings and seedling productivity also suggests a role for productivity in influencing community assembly.  相似文献   

11.
Soil organic carbon (SOC) was partitioned between unprotected and protected pools in six forests along an elevation gradient in the southern Appalachian Mountains using two physical methods: flotation in aqueous CaCl2 (1.4 g/mL) and wet sieving through a 0.053 mm sieve. Both methods produced results that were qualitatively and quantitatively similar. Along the elevation gradient, 28 to 53% of the SOC was associated with an unprotected pool that included forest floor O-layers and other labile soil organic matter (SOM) in various stages of decomposition. Most (71 to 83%) of the C in the mineral soil at the six forest sites was identified as protected because of its association with a heavy soil fraction (> 1.4 g/mL) or a silt-clay soil fraction. Total inventories of SOC in the forests (to a depth of 30 cm) ranged from 384 to 1244 mg C/cm2.The turnover time of the unprotected SOC was negatively correlated (r = –0.95, p < 0.05) with mean annual air temperature (MAT) across the elevation gradient. Measured SOC inventories, annual C returns to the forest floor, and estimates of C turnover associated with the protected soil pool were used to parameterize a simple model of SOC dynamics. Steady-state predictions with the model indicated that, with no change in C inputs, the low- (235–335 m), mid- (940–1000 m), and high- (1650–1670 m) elevation forests under study might surrender 40 to 45% of their current SOC inventory following a 4°C increase in MAT. Substantial losses of unprotected SOM as a result of a warmer climate could have long-term impacts on hydrology, soil quality, and plant nutrition in forest ecosystems throughout the southern Appalachian Mountains.  相似文献   

12.
Accession, decomposition and accumulation of litter were studied in three sub-alpine eucalypt forest communities (dominated by overstoreys of Eucalyptus delegatensis, E. pauciflora or E. dives) located in the Brindabella Range. Australian Capital Territory, at an elevation of 1100–1250 m. The sites had either been protected from fire for more than 20 years or been burnt by low-intensity prescribed fires. After a prescribed burn, the rate of decomposition of abscised leaves was reduced by 22% in E. delegatensis forest and by 34% in E. pauciflora forest, but was little affected in the drier E. dives community. Lowered decomposition was apparently due to greater aridity after fire, a consequence of removal of the shading understorey and reduction in the depth and hence mulching effect of the titter layer. Litter accumulates rapidly after prescribed burning, reaching a mass of 10–12 t ha?1 within 4–5 years in all communities. Such quantities are dangerous from a fire control viewpoint. The quasi steady-state mass of accumulated litter ranges from about 17 t ha?1 in E. dives and E. pauciflora forests to about 25 t ha?1 in old-growth E. delegatensis forests. The rapid re-accumulation of litter after fire is not the result of any significant change in litterfall rate, but is due to a marked reduction in the total amount of litter decomposing—and this reduction is more a consequence of a decrease in the weight of the forest floor than to any fire-induced lowering of the rate of litter decomposition. The rapid build-up of litter is a consequence of the relatively high rates of litterfall (3.4–5.0 t ha?1 year?1) and low rates of litter decomposition (k = 0.19–0.32 year?1) in these forests. In most cases the pattern of litter accumulation was well described by an exponential equation of the form Xt= Xss (1—e-kt), where Xt is the weight (t ha?1) of litter accumulated at time t (year). Xss is the weight of litter accumulated under steady-state conditions, and k is a decomposition rate constant (year?1). Marked temporal variations in annual litterfall and mass of accumulated litter were found at specific forest sites which had been unburnt for more than 4.5 years. Variation from the long-term mean was greater for litterfall (31–37%) than for accumulated litter (14–26%). The maximum error when calculating decomposition rate (k) as the ratio of annual litterfall: accumulated titter, when based on single measurements of these parameters, ranged from 43 to 69% of that based on long-term measurements. Decomposition rates of the entire titter layer, calculated for periods of 22–79 months, and based on measurements of litter input and change in mass of accumulated titter, were positively correlated with the average number of days per month during each period that the litter layer remained moist (>approx. 60% ODW). The implications of these findings for fire management planning in sub-alpine and other eucalypt forests are briefly discussed.  相似文献   

13.
Natural disturbances create spatial patterns of the ecosystem processes and functions in natural forests. However, how dynamics and the spatial structure of forests relate to soil nitrogen dynamics is not well understood. We examined the spatial relationship between the distributions of canopy and understory species, and soil nitrogen dynamics in a natural coniferous-broadleaved mixed forest with a dense understory of Sasa dwarf bamboo in northern Japan. The O horizon was thick where coniferous litter predominated, and it was thin where broadleaved litter predominated. The soil water content was low in areas with a thick O horizon and a high abundance of coniferous trees. The soil nitrate content was low where the soil water content was low, and the soil nitrate content increased linearly with increasing net nitrification potential. These results suggest that the soil nitrate content under the coniferous canopy was lower because of the low nitrification potential of soil microbes in soils with low water contents. The soil nitrate content and nitrification potential were higher in the canopy gap than under the canopy. Our results suggest that forest structure, specifically the thickness of the forest floor, significantly affects the spatial pattern of the soil water content, thereby creating a spatial pattern of soil nitrogen availability at a relatively small scale with flat topography. The higher nitrification potential under the canopy gap could pose a long-term risk of nitrate leaching because of the suppression of the natural regeneration of canopy species by dense Sasa dwarf bamboo in this forest ecosystem.  相似文献   

14.
15.
We have examined and dated primate divergences by applying a newly established molecular/paleontological reference, the evolutionary separation between artiodactyls and cetaceans anchored at 60 million years before present (MYBP). Owing to the morphological transformations coinciding with the transition from terrestrial to aquatic (marine) life and the large body size of the animals (which makes their fossils easier to find), this reference can be defined, paleontologically, within much narrower time limits compared to any local primate calibration marker hitherto applied for dating hominoid divergences. Application of the artiodactyl/cetacean reference (A/C-60) suggests that hominoid divergences took place much earlier than has been concluded previously. According to a homogenous-rate model of sequence evolution, the primary hominoid divergence, i.e., that between the families Hylobatidae (gibbons) and Hominidae, was dated at 36 MYBP. The corresponding dating for the divergence betweenPongo (orangutan) andGorilla-Pan (chimpanzee)-Homo is 24.5 MYBP, that forGorilla vsHomo-Pan is 18 MYBP, and that forHomo vsPan 13.5 MYBP. The split between Sumatran and Bornean orangutans was dated at 10.5 MYBP and that between the common and pygmy chimpanzees at 7 MYBP. Analyses of a single gene (cytochromeb) suggest that the divergence within the Catarrhini, i.e., between Hominoidea and Old World monkeys (Cercopithecoidea), took place >40 MYBP; that within the Anthropoidea, i.e., between Catarrhini and Platyrrhini (New World monkeys), >60 MYBP; and that between Anthropoidea and Prosimii (lemur), 80 MYBP. These separation times are about two times more ancient than those applied previously as references for the dating of hominoid divergences. The present findings automatically imply a much slower evolution in hominoid DNA (both mitochondrial and nuclear) than commonly recognized.  相似文献   

16.
Forest responses to the large-scale east coast fires in Korea   总被引:2,自引:0,他引:2  
The east coast forest fires of April 2000 were Koreas largest recorded fires. This, along with the fact that they took place in the region most frequently affected by fire, attracted a great deal of attention. Due to the variations in wind, topography and pre-fire forest stands, a heterogeneous landscape mosaic of burn severity was created across the region. It turned out to be an excellent opportunity to study various landscape-scale impacts of fires on forest dynamics. Therefore, we investigated stands in the 23794ha of burned forest region, in terms of burn severity, vegetation regeneration and forested landscape change as a measure of community stability. Using the geographic information system technique, we analyzed the differential severity and post-fire recovery of pre-fire forest types of different stand age both at stand and species level. Analysis showed that pre-fire vegetation was composed of mainly pine (Pinus densiflora) stands that occupied 70% of the whole forested area, while pine-hardwood and hardwood stands occupied only 28% and 3%, respectively. In addition, two-thirds of all stands were less than 30-years-old. Pine stands were the most severely burned, while conversely pine-hardwood and hardwood stands were less vulnerable. This implied that pine forests had fire-prone characteristics. Vegetation recovery went the opposite way; that is, the regenerating vegetation cover was 71% at pre-fire hardwood stands, and 65% and 53% at pine-hardwood and pine stands, respectively. However, these recovery rates were strikingly fast, considering that investigation took place about 3months after the fires. Fire did not initiate successional processes, but tended to accelerate the predicted successional changes by releasing pre-fire understory species that survived the fires and regenerated by sprouting. The dominant pre-fire tree species (P. densiflora) was susceptible to fire and not resilient enough to reestablish in competition with oak species. Contrary to pines, the abilities of oak species, mainly Quercus mongolica and Q. variabilis, to survive fires and to resprout vigorously made them dominant at most post-fire stands. These shifts in species abundance caused drastic changes to the landscape: from pine-dominated to oak-dominated stands without any notable change in species composition. The patterns in forest regeneration that we observed in Korea may be representative of forest responses to any long-term repeated disturbances, including fire.  相似文献   

17.
Hale CM  Frelich LE  Reich PB  Pastor J 《Oecologia》2008,155(3):509-518
A greenhouse mesocosm experiment, representing earthworm-free North American Acer-dominated forest floor and soil conditions, was used to examine the individual and combined effects of initial invasion by three European earthworm species (Dendrobaena octaedra, Lumbricus rubellus and Lumbricus terrestris) on the forest floor and upper soil horizons, N and P availability, and the mortality and biomass of four native understory plant species (Acer saccharum, Aquilegia canadensis, Aralia racemosa, and Carex pensylvanica). All the three earthworm species combined caused larger impacts on most variables measured than any single earthworm species. These included loss of O horizon mass, decreased thickness of the O horizon and increased thickness of the A horizon, and higher availability of N and P. The latter finding differs from field reports where nutrients were less available after invasion, and probably represents an initial transient increase in nutrient supply as earthworms consume and incorporate the O horizon into the A horizon. Earthworms also increased mortality of plants and decreased total mesocosm plant biomass, but here the impact of all the three earthworm species was no greater than that of L. terrestris and/or L. rubellus alone. This study corroborates field studies that European earthworm invasions alter North American forest ecosystem processes by initiating a cascade of impacts on plant community composition and soil properties.  相似文献   

18.

Background and aims

Fine root and aboveground litterfall, two large fluxes of nutrients and carbon in the forest ecosystems, are key processes to be considered in efforts of measuring, modeling and predicting soil carbon sequestration.

Methods

We used sequential coring and litter trap to measure seasonal dynamics of fine root and litterfall in three Korean pine dominated forests along an altitudinal gradient in the Changbai Mountain during the 2012 growing season.

Results

Fine root biomass decreased significantly while necromass increased remarkably with altitude. Patterns and amounts of fine root production and mortality varied among forest types. Litterfall decreased significantly with altitude, whereas forest floor mass increased. Carbon inputs through fine root mortality and litterfall decreased significantly with altitude while carbon storage of fine root mass did not differ among forest types and carbon storage of forest floor mass was significantly larger in higher altitudinal forests due to lower turnover rates.

Conclusions

This study provided an insight into the variations of fine root and litterfall dynamics among three Korean pine forests which were associated with different vegetation traits and environmental conditions, and also the quantification of carbon fluxes through fine root mortality and litterfall for estimating carbon budget of temperate forest.  相似文献   

19.
The general properties of the excitable membrane on molluscan pacemaker neurons can be described on the basis of a fair amount of experimental evidence available in the literature. The neuronal membrane exhibits under voltage clamp an initial inward current carried by both Na+ and Ca2+ ions, the time- and voltage-dependent characteristics of which are similar to that of other excitable structures. The conductance mechanism for the two ion species and the transport kinetics appear to be closely similar. The time course and amplitude of the delayed outward current carried by K+ ions shows a marked dependence on the membrane potential. Characteristic for the molluscan neurons is the existence of an additional fast transient outward current which is only activated by hyperpolarizing shifts from the membrane potential. A regular beating discharge over a wide range of frequencies can be predicted by making the assumption of a metabolically controlled driving of the Na+ conductance. Bursting pacemaker characteristics can be correctly simulated by the model if sinusoidal variations of an additional Na+ and Ca2+ conductances g Na and g Ca, and periodic variations of the K+ conductance g K, governed by the known operation of a metabolic substrate cycle are introduced. The close approximation of experimentally observed impulse bursts requires that the actual inpulse-frequency and the amplitude of the after-spike hyperpolarization are determined by the temporal pattern of g Na, while the spike amplitude is controlled by g Na which (although of similar time course) is lagging in phase behing g Na. The periodic changes in additional K+ conductance g K, are responsible for burst termination and the changes in inter-burst interval, to the effect that spike doublets, triplets and multi-spike bursts can be simulated by a suitable choice for the time characteristics of g K. The model makes use of the finding that the Ca2+ inflow associated with a spike discharge actually activates g K, so that large postburst hyperpolarizations can be obtained in high-frequency bursts.Supported by the Deutsche Forschungsgemeinschaft (Grant Ch 25/1)  相似文献   

20.
Aim Climate warming and increased wildfire activity are hypothesized to catalyse biogeographical shifts, reducing the resilience of fire‐prone forests world‐wide. Two key mechanisms underpinning hypotheses are: (1) reduced seed availability in large stand‐replacing burn patches, and (2) reduced seedling establishment/survival after post‐fire drought. We tested for regional evidence consistent with these mechanisms in an extensive fire‐prone forest biome by assessing post‐fire tree seedling establishment, a key indicator of forest resilience. Location Subalpine forests, US Rocky Mountains. Methods We analysed post‐fire tree seedling establishment from 184 field plots where stand‐replacing forest fires were followed by varying post‐fire climate conditions. Generalized linear mixed models tested how establishment rates varied with post‐fire drought severity and distance to seed source (among other relevant factors) for tree species with contrasting post‐fire regeneration adaptations. Results Total post‐fire tree seedling establishment (all species combined) declined sharply with greater post‐fire drought severity and with greater distance to seed sources (i.e. the interior of burn patches). Effects varied among key species groups. For conifers that dominate present‐day subalpine forests (Picea engelmannii, Abies lasiocarpa), post‐fire seedling establishment declined sharply with both factors. One exception was serotinous Pinus contorta, which did not vary with either factor. For montane species expected to move upslope under future climate change (Larix occidentalis, Pseudotsuga menziesii, Populus tremuloides) and upper treeline species (Pinus albicaulis), establishment was unrelated to either factor. Greater post‐fire tree seedling establishment on cooler/wetter aspects suggested local topographic refugia during post‐fire droughts. Main conclusions If future drought and wildfire patterns manifest as expected, post‐fire tree seedling establishment of species that currently characterize subalpine forests could be substantially reduced. Compensatory increases from lower montane and upper treeline species may partially offset these reductions, but our data suggest important near‐ to mid‐term shifts in the composition and structure of high‐elevation forests under continued climate warming and increased wildfire activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号