共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes a systematic analysis of the relationship between empirical data and theoretical conclusions for a set of experimental psychology articles published in the journal Science between 2005–2012. When the success rate of a set of empirical studies is much higher than would be expected relative to the experiments'' reported effects and sample sizes, it suggests that null findings have been suppressed, that the experiments or analyses were inappropriate, or that the theory does not properly follow from the data. The analyses herein indicate such excess success for 83% (15 out of 18) of the articles in Science that report four or more studies and contain sufficient information for the analysis. This result suggests a systematic pattern of excess success among psychology articles in the journal Science. 相似文献
2.
3.
Background
Although APP and its proteolytic metabolites have been well examined in the central nervous system, there remains limited information of their functions outside of the brain. For example, amyloid precursor protein (APP) and amyloid beta (Aβ) immunoreactivity have both been demonstrated in intestinal epithelial cells. Based upon the critical role of these cells in absorption and secretion, we sought to determine whether APP or its metabolite amyloid β (Aβ), had a definable function in these cells.Methodology/Principal Findings
The human colonic epithelial cell line, Caco-2 cells, were cultured to examine APP expression and Aβ secretion, uptake, and stimulation. Similar to human colonic epithelium stains, Caco-2 cells expressed APP. They also secreted Aβ 1-40 and Aβ 1-42, with LPS stimulating higher concentrations of Aβ 1-40 secretion. The cells also responded to Aβ 1-40 stimulation by increasing IL-6 cytokine secretion and decreasing cholesterol uptake. Conversely, stimulation with a sAPP-derived peptide increased cholesterol uptake. APP was associated with CD36 but not FATP4 in co-IP pull down experiments from the Caco-2 cells. Moreover, stimulation of APP with an agonist antibody acutely decreased CD36-mediated cholesterol uptake.Conclusions/Significance
APP exists as part of a multi-protein complex with CD36 in human colonic epithelial cells where its proteolytic fragments have complex, reciprocal roles in regulating cholesterol uptake. A biologically active peptide fragment from the N-terminal derived, sAPP, potentiated cholesterol uptake while the β secretase generated product, Aβ1-40, attenuated it. These data suggest that APP is important in regulating intestinal cholesterol uptake in a fashion dependent upon specific proteolytic pathways. Moreover, this biology may be applicable to cells beyond the gastrointestinal tract. 相似文献4.
Studies investigating the subcellular localization of periplasmic proteins have been hampered by problems with the export of green fluorescent protein (GFP). Here we show that a superfolding variant of GFP (sfGFP) is fluorescent following Sec-mediated transport and works best when the cotranslational branch of the pathway is employed. 相似文献
5.
Ignacio Islas-Flores Carlos Oropeza S.M. Teresa Hernández-Sotomayor 《Plant physiology》1998,118(1):257-263
Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species. 相似文献
6.
7.
Fourier Transform Infrared Microspectroscopy Detects Changes in
Protein Secondary Structure Associated with Desiccation Tolerance in
Developing Maize Embryos 总被引:2,自引:0,他引:2
下载免费PDF全文

Willem F. Wolkers Adriana Bochicchio Giuseppe Selvaggi Folkert A. Hoekstra 《Plant physiology》1998,116(3):1169-1177
Isolated immature maize (Zea mays L.) embryos have been shown to acquire tolerance to rapid drying between 22 and 25 d after pollination (DAP) and to slow drying from 18 DAP onward. To investigate adaptations in protein profile in association with the acquisition of desiccation tolerance in isolated, immature maize embryos, we applied in situ Fourier transform infrared microspectroscopy. In fresh, viable, 20- and 25-DAP embryo axes, the shapes of the different amide-I bands were identical, and this was maintained after flash drying. On rapid drying, the 20-DAP axes had a reduced relative proportion of α-helical protein structure and lost viability. Rapidly dried 25-DAP embryos germinated (74%) and had a protein profile similar to the fresh control axes. On slow drying, the α-helical contribution in both the 20- and 25-DAP embryo axes increased compared with that in the fresh control axes, and survival of desiccation was high. The protein profile in dry, mature axes resembled that after slow drying of the immature axes. Rapid drying resulted in an almost complete loss of membrane integrity in the 20-DAP embryo axes and much less so in the 25-DAP axes. After slow drying, low plasma membrane permeability ensued in both the 20- and 25-DAP axes. We conclude that slow drying of excised, immature embryos leads to an increased proportion of α-helical protein structures in their axes, which coincides with additional tolerance of desiccation stress. 相似文献
8.
Ryan P. Topping John C. Wilkinson Karin Drotschmann Scarpinato 《The Journal of biological chemistry》2009,284(21):14029-14039
Mismatch repair (MMR) proteins participate in cytotoxicity induced by
certain DNA damage-inducing agents, including cisplatin
(cis-diamminedichloroplatinum(II), CDDP), a cancer chemotherapeutic
drug utilized clinically to treat a variety of malignancies. MMR proteins have
been demonstrated to bind to CDDP-DNA adducts and initiate MMR
protein-dependent cell death in cells treated with CDDP; however, the
molecular events underlying this death remain unclear. As MMR proteins have
been suggested to be important in clinical responses to CDDP, a clear
understanding of MMR protein-dependent, CDDP-induced cell death is critical.
In this report, we demonstrate MMR protein-dependent relocalization of
cytochrome c to the cytoplasm and cleavage of caspase-9, caspase-3,
and poly(ADP-ribose) polymerase upon treatment of cells with CDDP. Chemical
inhibition of caspases specifically attenuates CDDP/MMR protein-dependent
cytotoxicity, suggesting that a caspase-dependent signaling mechanism is
required for the execution of this cell death. p53 protein levels were
up-regulated independently of MMR protein status, suggesting that p53 is not a
mediator of MMR-dependent, CDDP-induced death. This work is the first
indication of a required signaling mechanism in CDDP-induced, MMR
protein-dependent cytotoxicity, which can be uncoupled from other CDDP
response pathways, and defines a critical contribution of MMR proteins to the
control of cell death.The MMR2 system of
proteins plays roles in diverse cellular processes, perhaps most notably in
preserving genomic integrity by recognizing and facilitating the repair of
post-DNA replication base pairing errors. Recognition of these errors and
recruitment of repair machinery is performed by the MutSα complex
(consisting of the MMR proteins MSH2 and MSH6) or MutSβ complex
(consisting of MSH2 and MSH3). Defects in MMR proteins render cells
hypermutable and promote microsatellite instability, a hallmark of MMR
defects. MMR protein defects are found in a wide variety of sporadic cancers,
as well as in hereditary non-polyposis colorectal cancer
(1).In addition to their role in DNA repair, MMR proteins also play a role in
cytotoxicity induced by specific types of DNA-damaging chemotherapeutic drugs,
such as CDDP, which is utilized clinically to treat a number of different
cancer types. MutSα recognizes multiple types of DNA damage, including
1,2-intrastrand CDDP adducts and O6-methylguanine lesions
(2). Treatment of cells with
compounds that induce these types of lesions, including CDDP and methylating
agents such as
N-methyl-N′-nitro-N-nitrosoguanidine (MNNG),
results in MMR protein-dependent cell cycle arrest and cell death
(3–7).
This suggests that MMR proteins, in addition to their role in DNA repair, are
also capable of initiating cell death in response to certain types of DNA
damage.Cells treated with DNA-damaging agents frequently activate an apoptotic
cell death pathway mediated by the mitochondria. This intrinsic death
signaling pathway predominantly involves the coordinated activity of two
groups of proteins: pro-death members of the Bcl-2 family that control the
integrity of mitochondrial membranes, and members of the caspase family of
cysteinyl proteases that proteolytically cleave intracellular substrates,
giving rise to apoptotic morphology and destruction of the cell
(8,
9). Pro-death Bcl-2 family
members, such as Bax and Bak, target the outer mitochondrial membrane and
cause the cytosolic release of pro-death factors residing within the
mitochondria of unstressed cells
(8). Predominant among these
factors is cytochrome c, whose cytoplasmic localization results in
the formation of a caspase-activating platform known as the apoptosome
(10). This complex includes
the adaptor protein Apaf-1, and when formed the apoptosome promotes the
cleavage and activation of caspase-9
(11,
12). Once activated, this
apical caspase proceeds to cleave and activate caspase-3, the predominant
effector protease of apoptosis.A significant amount of evidence has been gathered illustrating MMR
protein-dependent pro-death signaling in response to methylating agents
(13–16,
3). In contrast, the MMR
protein-dependent cytotoxic response to CDDP is largely unknown, with only the
p53-related transactivator protein p73 and the c-Abl kinase clearly implicated
as potential mediators of CDDP/MMR protein-dependent cell death in human cells
(17,
18). Interestingly, ATM, Chk1,
Chk2, and p53, which are activated in an MMR protein-dependent manner after
treatment of cells with MNNG
(3,
13), are not involved in the
MMR-dependent response to CDDP
(7,
17). In addition, the
magnitude of MMR protein-dependent cell death induced by methylating agents
and CDDP differs (4). These
findings suggest that unique signaling pathways may be engaged by MMR proteins
depending upon the type of recognized lesion. As such, there is a requirement
for further study of the molecular events underlying MMR protein-dependent
cell death and cell cycle arrest for each type of recognized DNA lesion. This
is particularly relevant in the case of CDDP, as evidence from a limited
number of retrospective clinical studies suggests that MMR proteins play an
important role in patient response to CDDP. Several studies examining
immunohistochemical staining against MSH2 or MLH1 have demonstrated that
levels of these proteins are reduced in ovarian and esophageal tumor samples
following CDDP-based chemotherapy
(19,
20). Low levels of MMR protein
post-chemotherapy seem to be predictive of lower overall survival in a certain
subset of tumors (esophageal cancer), but not others (ovarian and non-small
cell lung cancer)
(19–21).
Two recent studies examining MMR protein levels and microsatellite instability
in germ cell tumors from patients receiving platinum-based chemotherapy have
suggested a prognostic value for pre-chemotherapy MMR protein status in these
tumors (22,
23). This potential clinical
relevance underscores the need for a greater understanding of MMR
protein-dependent mechanisms of CDDP-induced cell death.In this study, we report that CDDP induces an MMR protein-dependent
decrease in cell viability and MMR protein-dependent signaling in the form of
cytochrome c release to the cytoplasm and cleavage of caspase-9,
caspase-3, and PARP. Chemical inhibition of caspases specifically attenuates
CDDP/MMR protein-dependent loss of cell viability, indicating a requirement
for caspase activation in this process and uncoupling MMR protein-dependent
cytotoxic signaling from other CDDP response pathways. Additionally, the
CDDP-induced, MMR protein-dependent cytotoxic response is independent of p53
signaling. Our results demonstrate for the first time an MMR protein-dependent
pro-death signaling pathway in cells treated with CDDP. 相似文献
9.
10.
Martin H. J. Jaspers Kai Nolde Matthias Behr Seol-hee Joo Uwe Plessmann Miroslav Nikolov Henning Urlaub Reinhard Schuh 《The Journal of biological chemistry》2012,287(44):36756-36765
Claudins are integral transmembrane components of the tight junctions forming trans-epithelial barriers in many organs, such as the nervous system, lung, and epidermis. In Drosophila three claudins have been identified that are required for forming the tight junctions analogous structure, the septate junctions (SJs). The lack of claudins results in a disruption of SJ integrity leading to a breakdown of the trans-epithelial barrier and to disturbed epithelial morphogenesis. However, little is known about claudin partners for transport mechanisms and membrane organization. Here we present a comprehensive analysis of the claudin proteome in Drosophila by combining biochemical and physiological approaches. Using specific antibodies against the claudin Megatrachea for immunoprecipitation and mass spectrometry, we identified 142 proteins associated with Megatrachea in embryos. The Megatrachea interacting proteins were analyzed in vivo by tissue-specific knockdown of the corresponding genes using RNA interference. We identified known and novel putative SJ components, such as the gene product of CG3921. Furthermore, our data suggest that the control of secretion processes specific to SJs and dependent on Sec61p may involve Megatrachea interaction with Sec61 subunits. Also, our findings suggest that clathrin-coated vesicles may regulate Megatrachea turnover at the plasma membrane similar to human claudins. As claudins are conserved both in structure and function, our findings offer novel candidate proteins involved in the claudin interactome of vertebrates and invertebrates. 相似文献
11.
C. Nick Pace Gerald R. Grimsley J. Martin Scholtz 《The Journal of biological chemistry》2009,284(20):13285-13289
The structure, stability, solubility, and function of proteins depend on their net charge and on the ionization state of the individual residues. Consequently, biochemists are interested in the pK values of the ionizable groups in proteins and how these pK values depend on their environment. We review what has been learned about pK values of ionizable groups in proteins from experimental studies and discuss the important contributions they make to protein stability and solubility. 相似文献
12.
13.
14.
Shaoliang Hu Mingrong Wang Guoping Cai Mingyue He 《The Journal of biological chemistry》2013,288(43):30855-30861
Universal genetic codes are degenerated with 61 codons specifying 20 amino acids, thus creating synonymous codons for a single amino acid. Synonymous codons have been shown to affect protein properties in a given organism. To address this issue and explore how Escherichia coli selects its “codon-preferred” DNA template(s) for synthesis of proteins with required properties, we have designed synonymous codon libraries based on an antibody (scFv) sequence and carried out bacterial expression and screening for variants with altered properties. As a result, 342 codon variants have been identified, differing significantly in protein solubility and functionality while retaining the identical original amino acid sequence. The soluble expression level varied from completely insoluble aggregates to a soluble yield of ∼2.5 mg/liter, whereas the antigen-binding activity changed from no binding at all to a binding affinity of > 10−8
m. Not only does our work demonstrate the involvement of genetic codes in regulating protein synthesis and folding but it also provides a novel screening strategy for producing improved proteins without the need to substitute amino acids. 相似文献
15.
Lin Xiao Hongxu Xian Kit Yee Lee Bin Xiao Hongyan Wang Fengwei Yu Han-Ming Shen Yih-Cherng Liou 《The Journal of biological chemistry》2015,290(41):24961-24974
Mitochondrial morphologies change over time and are tightly regulated by dynamic machinery proteins such as dynamin-related protein 1 (Drp1), mitofusion 1/2, and optic atrophy 1 (OPA1). However, the detailed mechanisms of how these molecules cooperate to mediate fission and fusion remain elusive. DAP3 is a mitochondrial ribosomal protein that involves in apoptosis, but its biological function has not been well characterized. Here, we demonstrate that DAP3 specifically localizes in the mitochondrial matrix. Knockdown of DAP3 in mitochondria leads to defects in mitochondrial-encoded protein synthesis and abnormal mitochondrial dynamics. Moreover, depletion of DAP3 dramatically decreases the phosphorylation of Drp1 at Ser-637 on mitochondria, enhancing the retention time of Drp1 puncta on mitochondria during the fission process. Furthermore, autophagy is inhibited in the DAP3-depleted cells, which sensitizes cells to different types of death stimuli. Together, our results suggest that DAP3 plays important roles in mitochondrial function and dynamics, providing new insights into the mechanism of a mitochondrial ribosomal protein function in cell death. 相似文献
16.
Rishi Kumar Nageshan Nainita Roy Shatakshi Ranade Utpal Tatu 《PLoS neglected tropical diseases》2014,8(5)
Background
Hsp90 from Giardia lamblia is expressed by splicing of two independently transcribed RNA molecules, coded by genes named HspN and HspC located 777 kb apart. The reasons underlying such unique trans-splicing based generation of GlHsp90 remain unclear.Principle Finding
In this study using mass-spectrometry we identify the sequence of the unique, junctional peptide contributed by the 5′ UTR of HspC ORF. This peptide is critical for the catalytic function of Hsp90 as it harbours an essential “Arg” in its sequence. We also show that full length GlHsp90 possesses all the functional hall marks of a canonical Hsp90 including its ability to bind and hydrolyze ATP. Using qRT-PCR as well as western blotting approach we find the reconstructed Hsp90 to be induced in response to heat shock. On the contrary we find GlHsp90 to be down regulated during transition from proliferative trophozoites to environmentally resistant cysts. This down regulation of GlHsp90 appears to be mechanistically linked to the encystation process as we find pharmacological inhibition of GlHsp90 function to specifically induce encystation.Significance
Our results implicate the trans-spliced GlHsp90 from Giardia lamblia to regulate an essential stage transition in the life cycle of this important human parasite. 相似文献17.
Voltage-dependent ion channels transduce changes in the membrane electric field into protein rearrangements that gate their transmembrane ion permeation pathways. While certain molecular elements of the
voltage sensor and gates have been identified, little is known about either the nature of their conformational rearrangements or about how the voltage sensor is coupled to the gates. We used voltage clamp fluorometry to examine the voltage sensor (S4) and pore region (P-region) protein motions that underlie the slow inactivation of the
Shaker K+ channel. Fluorescent probes in both the P-region and S4 changed emission intensity in parallel with the
onset and recovery of slow inactivation, indicative of local protein rearrangements in this gating process. Two sequential rearrangements were observed, with channels first entering the P-type, and then the C-type inactivated
state. These forms of inactivation appear to be mediated by a single gate, with P-type inactivation closing the gate
and C-type inactivation stabilizing the gate''s closed conformation. Such a stabilization was due, at least in part, to
a slow rearrangement around S4 that stabilizes S4 in its activated transmembrane position. The fluorescence reports of S4 and P-region fluorophore are consistent with an increased interaction of the voltage sensor and inactivation gate upon gate closure, offering insight into how the voltage-sensing apparatus is coupled to a channel
gate. 相似文献
18.
19.