首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intestinal obstruction inhibits amino acid absorption. The inhibition, being dependent on the pathological changes of the absorptive epithelium, was considered as an index of injury and measured after varying periods of obstruction and after pretreatment with clindamycin, indomethacin, 16, 16-dimethyl-PGE2 or arachidonic acid. A reduction in amino acid uptake was apparent after 2h of obstruction and was increasingly evident after 4, 6 and 18h. During the late phase (after 6h), inhibition was partly prevented by pretreatment with clindamycin, but the antibiotic was ineffective during the early phase (within the first 2h). Bacterial colony counts of luminal contents of rats obstructed for 2h, were not different from counts obtained in controls, but significantly lower than counts in rats that have been obstructed for 6h. Pretreatment of rats with 16,16-dimethyl-PEG2 or with arachidonic acid prevented the early inhibitory effects of the obstruction. The findings suggest that the early inhibition in amino acid uptake may be related to metabolic changes that are correctable by the administration of 16,16-dimethyl-PGE2 or of arachidonic acid. The inhibition, during the late phase, is mainly related to an overgrowth of the enteric bacteria.  相似文献   

2.
The aim of the present study was to investigate in late first trimester and early second trimester patients whether whole cell homogenates of cervical tissue incubated with 14C-arachidonic acid was affected by pretreatment for 12 to 14 hours with PGE2 and 9-deoxo- 16,16-dimethyl-9-methylene PGE2 (9-methylene PGE2). After extraction, purification and separation, identification of the compounds found during incubation was achieved using radio-gas liquid chromatography and gas-liquid chromatography-mass spectrometry. Treatment with 9-methylene PGE2 accomplished a reduced production of 14C-labelled PGF2 alpha, -PGE2 and TxB2, while pretreatment with PGE2 induced increase in the production of 14C-6-keto-PGF1 alpha when cervical tissue homogenates were compared with specimens obtained from non-pretreated patients. Recently we reported a significantly increased formation of so far unidentified metabolite(s) in homogenates of human cervical tissue specimens obtained at or near term when compared with corresponding specimens obtained during early pregnancy. With both types of prostaglandin pretreatment there was a tendency of increased formation of these metabolites. It seems possible that the influence on the biochemistry of cervical tissue induced by PGE2 and 9-methylene PGE2 is mediated via the endogenous arachidonic acid cascade towards non-prostaglandin compound(s).  相似文献   

3.
In anesthetized dogs 48 h after unilateral ureteral ligation, intra-arterial injection of arachidonic acid produced a transient increase followed by a prolonged decrease of resistance in the ureteral-ligated kidney; whereas, in the control kidney, only the prolonged decrease in resistance was observed in response to arachidonate. Indomethacin blocked not only the arachidonate-induced renal efflux of both immunoreactive 6-keto-prostaglandin F1 alpha and thromboxane B2 but also vasodilation in both kidneys. In contrast, the initial vasoconstriction in the obstructed kidney was not affected by pretreatment with the cyclo-oxygenase inhibitor. Infusion of 5,8,11,14-eicosatetraynoic acid, an inhibitor of lipoxygenase activity, into the ureteral-ligated kidney after indomethacin markedly reduced the initial vasoconstrictor response to arachidonate. These data demonstrate that vascular reactivity to arachidonic acid is altered in the ureteral-obstructed kidney and are consistent with the hypothesis that formation of lipoxygenase as well as cyclooxygenase derivatives may participate in the hemodynamic responses to arachidonic acid in this pathophysiologic model.  相似文献   

4.
Hepatic availability, uptake and fractional extraction of amino acids were estimated in anaesthetized 21-day-pregnant and age-matched virgin rats, either fed or after 24 h starvation. Amino acid availability was unaltered in fed pregnant rats as compared with fed virgin controls. However, the hepatic uptake of these compounds was higher in the former than in the latter. These adaptations were mediated by an increase in the hepatic capability to take up amino acids in late-pregnant rats, as reflected by the changes found for the fractional extraction rates. The decrease in amino acid availability found after starvation was more pronounced in pregnant than in virgin rats. Nevertheless, the hepatic uptake was similar in both groups. These results indicate that amino acids are not limiting for ureagenesis during late pregnancy, strongly suggesting that the mechanism(s) which modulate urea synthesis may be intracellular in origin.  相似文献   

5.
Partial outlet obstruction of the urinary bladder has been demonstrated to induce specific dysfunctions in cellular and sub-cellular membrane structures within the bladder's smooth muscle and mucosal compartments. Recent studies have linked these membrane dysfunctions to alterations in phospholipid metabolism leading to mobilization of free arachidonic acid, the precursor for synthesis of prostaglandins (PG). The purpose of this study was to determine if partial outlet obstruction of the urinary bladder induces changes in the capacity of bladder smooth muscle and mucosa to generate PG. PG were isolated from control and partially obstructed urinary bladder smooth muscle and mucosa of male New Zealand White (NZW) rabbits. PG concentrations (PGE2, PGF2alpha and PGI2, as its stable metabolite 6-keto-PGF1alpha) were determined after 30 minute incubations using enzyme-linked immunoassay (ELISA) kits. In both control and obstructed rabbit urinary bladders, PG generation was significantly higher in isolated mucosa than muscle tissues. A significantly higher concentration of PGF2alpha, and 6-keto-PGF1alpha was measured in obstructed muscle tissue relative to controls. The concentration of 6-keto-PGF1alpha was also significantly higher than the concentrations measured for PGE2 and PGF2alpha in both control and obstructed smooth muscle samples. The generation of PGE2 was significantly higher in rabbit urinary bladder mucosa than either PGF2alpha or 6-keto-PGF1alpha in both control and obstructed samples. The capacity of obstructed mucosal tissue to generate 6-keto-PGF1alpha was significantly higher than control tissue, while no significant differences in PGE or PGF2alpha generation were noted. These data suggest obstruction of the urinary bladder induce specific elevations in PG in both smooth muscle and mucosal tissues.  相似文献   

6.
We have previously shown in HK-2 cells that ATRA (all-trans-retinoic acid) up-regulates HIF-1α (hypoxia-inducible factor-1α) in normoxia, which results in increased production of renal protector VEGF-A (vascular endothelial growth factor-A). Here we investigated the role of COXs (cyclooxygenases) in these effects and we found that, i) ATRA increased the expression of COX-1 and COX-2 mRNA and protein and the intracellular levels (but not the extracellular ones) of PGE(2). Furthermore, inhibitors of COX isoenzymes blocked ATRA-induced increase in intracellular PGE(2), HIF-1α up-regulation and increased VEGF-A production. Immunofluorescence analysis found intracellular staining for EP1-4 receptors (PGE(2) receptors). These results indicated that COX activity is critical for ATRA-induced HIF-1α up-regulation and suggested that intracellular PGE(2) could mediate the effects of ATRA; ii) Treatment with PGE(2) analog 16,16-dimethyl-PGE(2) resulted in up-regulation of HIF-1α and antagonists of EP1-4 receptors inhibited 16,16-dimethyl-PGE(2)- and ATRA-induced HIF-1α up-regulation. These results confirmed that PGE(2) mediates the effects of ATRA on HIF-1α expression; iii) Prostaglandin uptake transporter inhibitor bromocresol green blocked the increase in HIF-1α expression induced by PGE(2) or by PGE(2)-increasing cytokine interleukin-1β, but not by ATRA. Therefore only intracellular PGE(2) is able to increase HIF-1α expression. In conclusion, intracellular PGE(2) increases HIF-1α expression and mediates ATRA-induced HIF-1α up-regulation.  相似文献   

7.
Daily intratumor administration of 16,16-dimethyl-PGE2-methyl ester in two different dosages inhibited tumor growth in C57Bl/6J mice bearing subcutaneous B-16 melanomas. The larger dose (20 microgram/day/mouse) produced a 68% decrease in tumor volume, a 69% decrease in tumor weight and a 60% decrease in the number of cells in mitotic phase. The smaller dose (10microgram/day/mouse) was one fifth less effective than the 20microgram dose but produced similar changes. Histological examination of tumors revealed no significant differences either in the inflammatory cell population or the amount of necrosis in the control and di-M-PGE2-treated tumors.  相似文献   

8.
Peritoneal macrophages from normal mice were labelled with [1-14C]arachidonic acid after 2 h culture. The uptake of arachidonic acid into cellular lipids was rapid, time-dependent and can be represented within the limit of the studied times by a parabolic regression. Indomethacin decreased the kinetics of uptake; this inhibition is dose-dependent. Chloramphenicol had no effect on macrophage [1-14C]arachidonic acid uptake. After 3 h, the radioactivity was recovered in phosphatidylcholine (38.6%), phosphatidylserine-phosphatidylinositol (8.5%), phosphatidylethanolamine (22.1%), diacylglycerol (2.9%), triacyglycerol (2%) and cholesteryl ester (11.8%). Chloramphenicol and indomethacin inhibited the labelling of phospholipids and stimulated the labelling of neutral lipids and cholesteryl ester. Studies on arachidonic acid release from glycerolipids of prelabelled 2-h cultured macrophages showed that phosphatidylcholine and phosphatidylserine-phosphatidylinositol are the major source of arachidonic acid in prostaglandin synthesis in macrophages stimulated or not by zymosan. Chloramphenicol inhibited release of fatty acid from phosphatidylcholine and phosphatidylserine-phosphatidylinositol; indomethacin had no effect. Both drugs inhibited prostaglandin synthesis in stimulated or non-stimulated macrophages. In the culture medium, indomethacin increased the release of free arachidonic acid by stimulated macrophages. Possible explanations for the mechanisms underlying these effects are presented. It is concluded that indomethacin and chloramphenicol exert profound effects on the metabolism of phospholipids and its zymosan activation. Chloramphenicol appears to impair prostaglandin synthesis through several mechanisms and especially through phospholipase inhibition.  相似文献   

9.
The in vivo monkey uterine stimulating potency of 9-deoxy-16,16-dimethyl-9-methylene-PGE2 is similar to that of 16,16-dimethyl-PGE2 and approximately 15 times that of PGE2. Low doses of this compound stimulated uterine contractions when administered vaginally. Pregnancy was terminated prematurely following subcutaneous, intramuscular or vaginal suppository treatment. Estimates of potential for gastrointestinal side effects using the rat enteropooling assay and in vivo monkey effects indicate that diarrhea will be substantially reduced with retention of uterine stimulating potency.  相似文献   

10.
Prostaglandin E1 (PGE1) at 1 nM inhibits arginine-vasopressin (AVP)-induced water reabsorption in the rabbit cortical collecting tubule (RCCT), while 100 nM PGE1, by itself, stimulates water reabsorption (Grantham, J. J., and Orloff, J. (1968) J. Clin. Invest. 47, 1154-1161). To investigate the basis for these two responses, we measured the effects of prostaglandins on cAMP metabolism in purified RCCT cells. In freshly isolated cells, PGE2, PGE1, and 16,16-dimethyl-PGE2 acting at high concentrations (0.1-10 microM) stimulated cAMP accumulation; however, one PGE2 analog, sulprostone (16-phenoxy-17,18,19,20-tetranor-PGE2 methylsulfonilamide), failed to stimulate cAMP accumulation or to antagonize PGE2-induced cAMP formation; PGD2, PGF2 alpha, and a PGI2 analog, carbacyclin (6-carbaprostaglandin I2), also failed to stimulate cAMP synthesis. These results suggest that there is a PGE-specific stimulatory receptor in RCCT cells which mediates activation of adenylate cyclase. Occupancy of this receptor would be anticipated to cause water reabsorption by the collecting tubule. At lower concentrations (0.1-100 nM) PGE2, PGE1, 16,16-dimethyl-PGE2, and, in addition, sulprostone inhibited AVP-induced cAMP accumulation by fresh RCCT cells in the presence of cAMP phosphodiesterase inhibitors. Pertussis toxin pretreatment of RCCT cells blocked the ability of both PGE2 and sulprostone to inhibit AVP-induced cAMP accumulation. In membranes prepared from RCCT cells, sulprostone prevented stimulation of adenylate cyclase by AVP. These results suggest that E-series prostaglandins (including sulprostone) can act through an inhibitory PGE receptor(s) coupled to the inhibitory guanine nucleotide regulatory protein, Gi, to block AVP-induced cAMP synthesis by RCCT cells. Occupancy of this receptor would be expected to cause inhibition of AVP-induced water reabsorption in the intact tubule. Curiously, after RCCT cells were cultured for 5-7 days, PGE2 no longer inhibited AVP-induced cAMP accumulation, but PGE2 by itself could still stimulate cAMP accumulation. In contrast to PGE2, epinephrine acting via an alpha 2-adrenergic, Gi-linked mechanism did block AVP-induced cAMP formation by cultured RCCT cells. This implies that some component of the inhibitory PGE response other than Gi is lost when RCCT cells are cultured.  相似文献   

11.
Intrarenal renin-Angiotensin system (RAS) activity is increased during early development and is further enhanced by unilateral ureteral obstruction (UUO). We studied the involvement of mitogen-activated protein (MAP) kinase members and the RhoA GTPase signaling pathways on the regulation of renal cell response after AT1 Angiotensin II receptor inhibition in obstruction. Neonatal rats subjected to sham operation or complete UUO within the first 48 hours of life received saline vehicle, Losartan (AT1 inhibitor), or PD-123319 (AT2 inhibitor) during the first 14 days of life. Cortex tubular epithelial cell apoptotic response was shown by TUNEL and confirmed by electron microscopy associated with mitochondrial signaling pathway through the increased proapoptotic ratio Bax/BcL-2, and consequently increased caspase 3 expression and activity in obstructed kidney before and after Type 1 (AT1) receptor blockade. Non injury of contralateral kidney was shown. The convergence of two independent signal pathways, the RhoA GTPase and pERK and concurrent inhibition of JNK MAP kinase, were required for the apoptotic response in 14 day kidney obstructed tubular cells either with or without Losartan treatment. Absence of increased AT2 protein expression after AT1 receptor inhibition on day 14 of obstruction was shown. Selective AngiotensinAT2-receptor inhibition with PD-123319 had no protective effect on the renal response to complete 14 day UUO. We suggest a role of both RhoA GTPase activation and the opposing actions of the ERK and JNK-MAP kinase signaling pathways as events involved in tubular cell apoptosis regulation in neonatal UUO. The selective AT1-receptor inhibition had no effect on the renal cellular response in the kidney subjected to UUO for 14 days.  相似文献   

12.
The aim of this study was to investigate mechanisms responsible for the inhibition of biliary glutathione efflux in rats with secondary biliary cirrhosis. Rats were studied after bile duct obstruction for 28 days. The biliary secretion of reduced glutathione (GSH), oxidised glutathione (GSSG) and cysteine were completely inhibited in biliary obstructed rats. Hepatic gamma glutamyltranspeptidase (gamma-GT) activity increased significantly, but following its inhibition by acivicin administration GSH, GSSG and cysteine were still absent in bile. Biliary obstruction resulted in a significant increase of the permeability of the paracellular pathway, as shown by the higher bile/plasma ratio and hepatic clearance of [14C]sucrose. GSH and GSSG were, however, significantly lower in the carotid artery and hepatic vein of obstructed animals and the arteriovenous difference across the liver was reduced. The concentration of GSH was significantly reduced and that of GSSG increased in the liver of obstructed rats. Biliary obstruction induced an increase in the hepatic concentration of cysteine and an inhibition of both gamma glutamylcysteine synthetase and methionine adenosyl transferase activities. Dichlorofluorescein (DCF) and the GSSG/GSH ratio and thiobarbituric acid reactive substances (TBARS) concentration, markers of reactive oxygen species production and lipid peroxidation, respectively, were significantly increased. Our data indicate that increased degradation or blood reflux of glutathione do not participate in the disruption of its secretion into bile and support the view that impairment of glutathione synthesis and oxidative stress could contribute to the decline in biliary glutathione output.  相似文献   

13.
Arteriovenous differences of amino acids across the mammary glands of lactating rats are diminished when the rats are starved for 24 h. When 24 h-starved rats were refed for 2 1/2 h, the arteriovenous differences of amino acids returned to values similar to those found in well-fed rats. In order to find a possible explanation for these rapid changes, we tested the effect of ketone bodies on amino acid uptake by the gland. At 5 min after injection of acetoacetate to fed rats, when the total concentration of ketone bodies in blood was similar to that found in starvation, the uptake of amino acids by the mammary gland was similar to that found after starvation, i.e. lower than in fed rats. However, 30 min after administration of acetoacetate, when the arterial concentration of ketone bodies had returned to values similar to those in fed rats, the arteriovenous differences of amino acids were similar to those found in fed rats. We conclude that the changes in blood ketone bodies may be responsible, at least in part, for the changes in amino acid uptake that occur in starvation and in the starvation--refeeding transition.  相似文献   

14.
We have investigated whether the presence of other fatty acids in physiologic amounts will influence the effects of eicosapentaenoic acid on cellular lipid metabolism and prostaglandin production. Eicosapentaenoic acid uptake by cultured bovine aortic endothelial cells was time and concentration dependent. At concentrations between 1 and 25 microM, most of the eicosapentaenoic acid was incorporated into phospholipids and of this, 60-90% was present in choline phosphoglycerides. Eicosapentaenoic acid inhibited arachidonic acid uptake and conversion to prostacyclin (prostaglandin I2) but was not itself converted to eicosanoids. Only small effects on the uptake of 10 microM eicosapentaenoic acid occurred when palmitic, stearic or oleic acids were added to the medium in concentrations up to 75 microM. In contrast, eicosapentaenoic acid uptake was reduced considerably by the presence of linoleic, n-6 eicosatrienoic, arachidonic or docosahexaenoic acids. Although a 100 microM mixture of palmitic, stearic, oleic and linoleic acid (25:10:50:15) had little effect on the uptake of 10 or 20 microM eicosapentaenoic acid, less of this acid was channeled into endothelial phospholipids. However, the fatty acid mixture did not prevent the inhibitory effect of eicosapentaenoic acid on prostaglandin I2 formation in response to either arachidonic acid or ionophore A23187. An 8 h exposure to eicosapentaenoic acid was required for the inhibition to become appreciable and, after 16 h, prostaglandin I2 production was reduced by as much as 60%. These findings indicate that the capacity of aortic endothelial cells to produce prostaglandin I2 is decreased by continuous exposure to eicosapentaenoic acid. Even if the eicosapentaenoic acid is present as a small percentage of a physiologic fatty acid mixture, it is still readily incorporated into endothelial phospholipids and retains its inhibitory effect against endothelial prostaglandin I2 formation. Therefore, these actions may be representative of the in vivo effects of eicosapentaenoic acid on the endothelium.  相似文献   

15.
Some (+)-11-deoxy-16-phenoxyprostaglandin E1 analogues have been evaluated as uterine stimulants in the anaesthetised pregnant rat. Gastrointestinal side effects, assessed by the antagonism of morphine-induced constipation in the mouse, were relatively low with some of these compounds, six of which had a much more favourable relative selectivity than 16,16-dimethyl-PGE2 methyl ester.  相似文献   

16.
The effects of arachidonic acid and thrombin on calcium movements have been studied in fura-2-loaded platelets by a procedure which allows simultaneous monitoring of the uptake of manganese, a calcium surrogate for Ca2+ channels, and the release of Ca2+ from intracellular stores. Arachidonic acid induced both Ca2+ (Mn2+) entry through the plasma membrane and Ca2+ release from the intracellular stores. The release of Ca2+ was prevented by cyclo-oxygenase inhibitors and mimicked by the prostaglandin H2/thromboxane A2 receptor agonist U46619. Ca2+ (Mn2+) entry required higher concentrations of arachidonic acid and was not prevented by either cyclo-oxygenase or lipoxygenase inhibitors. Several polyunsaturated fatty acids reproduced the effect of arachidonic acid on Ca2+ (Mn2+) entry, but higher concentrations were required. The effects of maximal concentrations of arachidonic acid and thrombin on the uptake of Mn2+ were not additive. Both agonists induced the entry of Ca2+, Mn2+, Co2+ and Ba2+, but not Ni2+, which, in addition, blocked the entry of the other divalent cations. However, arachidonic acid, but not thrombin, increased a Ni2(+)-sensitive permeability to Mg2+. The effect of thrombin but not that of arachidonic acid was prevented either by pretreatment with phorbol ester or by an increase in cyclic-AMP levels. Arachidonic acid also accelerated the uptake of Mn2+ by human neutrophils, rat thymocytes and Ehrlich ascites-tumour cells.  相似文献   

17.
TPA regulation of prostaglandin H synthase activity in primary and subcultured dog urothelial cells was investigated. Previous studies have demonstrated an early (0-2 hr) increase in PGE2 synthesis mediated by TPA which is dependent upon release of endogenous arachidonic acid by a phospholipase-mediated pathway. In this study, prostaglandin H synthase activity was assessed directly with microsomes and indirectly after addition of exogenous arachidonic acid at a maximum effective concentration (100 microM) to media. PGE2 synthesis, measured by radioimmunoassay, served as an index of prostaglandin H synthase activity. After a 24-hr incubation with 0.1 microM TPA or 1.0 microM A23187, arachidonic acid elicited significantly more PGE2 synthesis in agonist-treated cells than it did in control cells in primary culture. Microsomes from 24-hr TPA-treated cells exhibited significantly more prostaglandin H synthase activity than did those from control cells. In addition, the PGE2 content of overnight media was approximately 10-fold greater in TPA-treated cells than in control cells. The late (24 hr) response was more sensitive to lower concentrations of TPA than was the earlier (0-2 hr) response. TPA at 0.1 microM was a maximum effective dose for both responses. The 24-hr response was blocked by cycloheximide and staurosporine, inhibitors of protein synthesis and protein kinase C, respectively. Pretreatment of cells with aspirin, an irreversible inhibitor of prostaglandin H synthase, prior to addition of TPA did not prevent the late TPA-mediated increase in PGE2 synthesis. Subcultured cells exhibited both an early and a late TPA response. Only the early response was inhibited by aspirin pretreatment. Results suggest that the late response with TPA is caused by de novo synthesis of prostaglandin H synthase. Thus, primary and subcultured dog urothelial cells possess two distinct mechanisms for regulating signal transduction by arachidonic acid metabolism. This study provides a basis for assessing these mechanisms of signal transduction in urothelial cell lines and transformed cells.  相似文献   

18.
The repair of damaged gastric mucosa is a complex process involving prostaglandins (PG) and mucosal growth factors such as epidermal growth factor (EGF). Recently, we postulated that the increased occurrence of apoptosis in the gastric epithelium might be of pathophysiological importance in the development of stress lesions. The aim of the present study was to assess the effect of the pretreatment of rats, exposed to 3.5 h of water immersion and restraint stress (WRS), with EGF and PG (16,16 dmPGE(2)) on the number of stress lesions, recovery of gastric mucosa from stress and the expression of apoptosis related genes such as caspase-3 and antiapoptotic bcl-2. Rats were divided in following groups: (1) vehicle; (2) EGF 100 microg/kg i.p.; (3) 16,16 dm-PGE(2) (5 microg/kg i.g.) and caspase-1 inhibitor (ICE-I; 100 microg/kg i.p.). One hour later, the rats were exposed to 3.5 h of WRS and then sacrificed immediately (0 h) or at 6, 12, or 24 h after WRS. The number of acute gastric lesions was determined. Gastric epithelial apoptosis was assessed by TUNEL staining. In addition, mRNA expression of caspase-3, Bcl-2 and proinflammatory cytokines (IL-1 beta, TNFalpha) was assessed by RT-PCR. PGE(2) generation in gastric mucosa and luminal EGF were determined by RIA. Exposure to WRS resulted in the development of multiple acute stress erosions ( approximately 18) which almost completely healed during 24 h. The gastric blood flow was significantly reduced (approximately 70% of intact mucosa) immediately after WRS. The expression of mRNA for IL-1 beta and TNF alpha reached their peak at 12 h after stress exposure. The apoptosis rate was highest at 6 h after WRS and was accompanied by the highest caspase-3 expression. In rats pretreated with EGF or 16,16 dm-PGE(2), a significant decrease in caspase-3 mRNA and upregulation of bcl-2 mRNA as observed as compared to vehicle controls. Caspase-1 inhibitor significantly reduced the number of stress lesions. We conclude that EGF and PGE(2) accelerate healing of stress-induced lesions due to the attenuation of apoptosis via upregulation of bcl-2 in gastric mucosa. Inhibitors of apoptosis accelerate healing of stress lesions and may be potentially effective agents in the healing of damaged gastric mucosa.  相似文献   

19.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   

20.
The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号