首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Highly specific gene silencing by artificial miRNAs in rice   总被引:2,自引:0,他引:2  
  相似文献   

3.
Duan CG  Wang CH  Fang RX  Guo HS 《Journal of virology》2008,82(22):11084-11095
Short-hairpin RNAs based on microRNA (miRNA) precursors to express the artificial miRNAs (amiRNAs) can specifically induce gene silencing and confer virus resistance in plants. The efficacy of RNA silencing depends not only on the nature of amiRNAs but also on the local structures of the target mRNAs. However, the lack of tools to accurately and reliably predict secondary structures within long RNAs makes it very hard to predict the secondary structures of a viral genome RNA in the natural infection conditions in vivo. In this study, we used an experimental approach to dissect how the endogenous silencing machinery acts on the 3′ untranslated region (UTR) of the Cucumber mosaic virus (CMV) genome. Transiently expressed 3′UTR RNAs were degraded by site-specific cleavage. By comparing the natural cleavage hotspots within the 3′UTR of the CMV-infected wild-type Arabidopsis to those of the triple dcl2/3/4 mutant, we acquired true small RNA programmed RNA-induced silencing complex (siRISC)-mediated cleavage sites to design valid amiRNAs. We showed that the tRNA-like structure within the 3′UTR impeded target site access and restricted amiRNA-RISC-mediated cleavage of the target viral RNA. Moreover, target recognition in the less-structured area also influenced siRISC catalysis, thereby conferring different degrees of resistance to CMV infection. Transgenic plants expressing the designed amiRNAs that target the putative RISC accessible target sites conferred high resistance to the CMV challenge from both CMV subgroup strains. Our work suggests that the experimental approach is credible for studying the course of RISC target recognition to engineer effective gene silencing and virus resistance in plants by amiRNAs.  相似文献   

4.
Plant microRNAs (miRNAs) affect only a small number of targets with high sequence complementarity, while animal miRNAs usually have hundreds of targets with limited complementarity. We used artificial miRNAs (amiRNAs) to determine whether the narrow action spectrum of natural plant miRNAs reflects only intrinsic properties of the plant miRNA machinery or whether it is also due to past selection against natural miRNAs with broader specificity. amiRNAs were designed to target individual genes or groups of endogenous genes. Like natural miRNAs, they had varying numbers of target mismatches. Previously determined parameters of target selection for natural miRNAs could accurately predict direct targets of amiRNAs. The specificity of amiRNAs, as deduced from genome-wide expression profiling, was as high as that of natural plant miRNAs, supporting the notion that extensive base pairing with targets is required for plant miRNA function. amiRNAs make an effective tool for specific gene silencing in plants, especially when several related, but not identical, target genes need to be downregulated. We demonstrate that amiRNAs are also active when expressed under tissue-specific or inducible promoters, with limited nonautonomous effects. The design principles for amiRNAs have been generalized and integrated into a Web-based tool (http://wmd.weigelworld.org).  相似文献   

5.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. They are produced through an enzyme-guided process called dicing and have an asymmetrical structure with two nucleotide overhangs at the 3′ ends. Artificial microRNAs (amiRNAs or amiRs) are designed to mimic the structure of miRNAs and can be used to silence specific genes of interest. Traditionally, amiRNAs are designed based on an endogenous miRNA precursor with certain mismatches at specific positions to increase their efficiency. In this study, the authors modified the highly expressed miR168a in Arabidopsis thaliana by replacing the single miR168 stem-loop/duplex with tandem asymmetrical amiRNA duplexes that follow the statistical rules of miRNA secondary structures. These tandem amiRNA duplexes, called “two-hit” amiRNAs, were shown to have a higher efficiency in silencing GFP and endogenous PDS reporter genes compared to traditional “one-hit” amiRNAs. The authors also demonstrated the effectiveness of “two-hit” amiRNAs in silencing genes involved in miRNA, tasiRNA, and hormone signalling pathways, individually or in families. Importantly, “two-hit” amiRNAs were also able to over-express endogenous miRNAs for their functions. The authors compare “two-hit” amiRNA technology with CRISPR/Cas9 and provide a web-based amiRNA designer for easy design and wide application in plants and even animals.  相似文献   

6.
7.
Host-induced gene silencing (HIGS) refers to the silencing of genes in pathogens and pests by expressing homologous double-stranded RNAs (dsRNA) or artificial microRNAs (amiRNAs) in the host plant. The discovery of such trans-kingdom RNA silencing has enabled the development of RNA interference-based approaches for controlling diverse crop pathogens and pests. Although HIGS is a promising strategy, the mechanisms by which these regulatory RNAs translocate from plants to pathogens, and how they induce gene silencing in pathogens, are poorly understood. This lack of understanding has led to large variability in the efficacy of various HIGS treatments. This variability is likely due to multiple factors, such as the ability of the target pathogen or pest to take up and/or process RNA from the host, the specific genes and target sequences selected in the pathogen or pest for silencing, and where, when, and how the dsRNAs or amiRNAs are produced and translocated. In this review, we summarize what is currently known about the molecular mechanisms underlying HIGS, identify key unanswered questions, and explore strategies for improving the efficacy and reproducibility of HIGS treatments in the control of crop diseases.

A review of what is known and unknown about the molecular mechanisms underlying the silencing of pathogen and pest genes via the expression of complementary RNAs in the host plant.  相似文献   

8.
9.
In plants, the silencing efficacy of microRNAs (miRNAs) is thought to be predominantly determined by the degree of complementarity to their target genes. Here, silencing efficacy was determined for Arabidopsis miR159 and four artificial miRNAs (amiRNAs) that all target MYB33/MYB65 with analogous complementarities. As determined through complementation of a loss-of-function mir159 mutant, the amiRNAs displayed highly variable efficacies, none of which was as strong as endogenous miR159. This was despite amiRNA expression levels being many fold-higher than miR159 in wild-type. The results highlight the variable nature of miRNA silencing efficacy in plants, where it appears that factors additional to complementarity strongly impact silencing.  相似文献   

10.
In contrast to hairpin RNAs, in which heterogeneous small RNAs are processed from double-stranded RNA to have potential off-target effects on endogenous other genes, artificial miRNAs (amiRNAs) have advantages of exquisite specificity and non-transitivity to thus target individual genes and groups of endogenous genes. Earlier studies showed that amiRNA engineering based on osa-miRNA528 precursor could efficiently trigger endogenous gene silencing and modulate agronomic traits in rice. However, both the expression efficiency of heterologous amiRNAs based on osa-miRNA528 precursor and the correlation of copy number with the relative expression level of amiRNAs remain unknown. In the present study, five amiRNAs (S9-1174, S9-1192, S11-864, S11-868 and S11-869) targeting different sites of S9 and S11 negative strands in rice dwarf virus (RDV) genome were constructed using endogenous osa-miRNA528 precursor as backbone. After identification by Northern blot, two amiRNAs (S9-1174 and S9-1192) targeting S9 negative strand in RDV genome were highly expressed, whereas in three tested amiRNAs targeting S11 negative strand in RDV genome, only two amiRNAs (S11-868 and S11-869) were processed efficiently. T0 generation transgenic rice containing amiRNAs (S9-1174, S9-1192, S11-868 and S11-869) exhibited different expression ratios of amiRNAs, accounting for 90.0, 90.0, 66.7 and 77.8 %, respectively. In addition, combination analysis with the relative amiRNA expression levels and its copy number revealed that the relative expression levels of amiRNAs had no relation to the copy number of T-DNA insert in transgenic rice.  相似文献   

11.
12.

Background

RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs) or microRNAs (amiRNAs) in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects.

Methodology/Principal findings

In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2), two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti). Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE) or tubulin folding cofactor D (TBCD) genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA.

Conclusions/Significance

Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of insect-specific amiRNA is a promising and preferable approach to engineer plants resistant to aphids and, possibly, to other plant-infesting insects.  相似文献   

13.
王健 《植物科学学报》2015,33(6):819-828
amiRNA(artificial microRNA)作为一种诱导基因发生特异性沉默的技术已在多种植物中应用,但设计出的不同amiRNAs在所转化株系中的沉默效率难以预测,因此对amiRNA载体的沉默效率进行预验证是非常必要的。本实验以丹参(Salvia miltiorrhiza)的1个MYB类转录因子基因SmPAP1的mRNA序列为amiRNA作用对象,并挑选2个经在线软件WMD3(Web MicroRNA Designer)设计的amiRNAs,分别命名为amiRNA1-SmPAP1和amiRNA2-SmPAP1,然后通过农杆菌介导将构建的2个amiRNA载体和SmPAP1过表达植物载体在烟草叶片细胞中进行瞬时共表达。结果显示,amiRNA2的表达丰度约是amiRNA1的2倍;amiRNA2对靶标SmPAP1的沉默效率约是amiRNA1的2.5倍;SmPAP1在mRNA和蛋白水平上均与相应amiRNA的表达水平呈显著负相关。因此,amiRNA在烟草细胞中的瞬时表达可快速、有效地对不同amiRNA沉默效果进行预验证,从而为后续的植物遗传转化研究提供重要参考。  相似文献   

14.
15.
Deleteagene(trade mark) (Delete-a-gene) is a deletion-based gene knockout system for plants. To obtain deletion mutants for a specific gene, random deletion libraries created by fast neutron mutagenesis are screened by polymerase chain reaction (PCR) using primers flanking the target gene. By adjusting the PCR extension time to preferentially amplify the deletion alleles, deletion mutants can be identified in pools of DNA samples with each sample representing more than a thousand mutant lines. In Arabidopsis, knockout plants for greater than 80% of targeted genes have been obtained from a population of 51 840 lines. A large number of deletion mutants have been identified and multiple deletion alleles are often recovered for targeted loci. In Arabidopsis, the method is very useful for targeting small genes and can be used to find deletion mutants mutating two or three tandem homologous genes. In addition, the method is demonstrated to be effective in rice as a deletion mutant for a rice gene was obtained with a similar approach. Because fast neutron mutagenesis is applicable to all plant genetic systems, Deleteagene(trade mark) has the potential to enable reverse genetics for a wide range of plant species.  相似文献   

16.
17.
Long hairpin RNA (hpRNA) transgenes are a powerful tool for gene function studies in plants, but a genomewide RNAi mutant library using hpRNA transgenes has not been reported for plants. Here, we report the construction of a hpRNA library for the genomewide identification of gene function in rice using an improved rolling circle amplification‐mediated hpRNA (RMHR) method. Transformation of rice with the library resulted in thousands of transgenic lines containing hpRNAs targeting genes of various function. The target mRNA was down‐regulated in the hpRNA lines, and this was correlated with the accumulation of siRNAs corresponding to the double‐stranded arms of the hpRNA. Multiple members of a gene family were simultaneously silenced by hpRNAs derived from a single member, but the degree of such cross‐silencing depended on the level of sequence homology between the members as well as the abundance of matching siRNAs. The silencing of key genes tended to cause a severe phenotype, but these transgenic lines usually survived in the field long enough for phenotypic and molecular analyses to be conducted. Deep sequencing analysis of small RNAs showed that the hpRNA‐derived siRNAs were characteristic of Argonaute‐binding small RNAs. Our results indicate that RNAi mutant library is a high‐efficient approach for genomewide gene identification in plants.  相似文献   

18.
Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs) against mutant alleles of the human Prion Protein (PRNP) gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs), of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense-strand siRNA elements, which possibly increase the assembly of antisense-strand (guide) siRNAs into RNA-induced silencing complexes (RISCs), may enhance ASP-RNAi in the case of inert siRNA duplexes. Therefore, the data presented here suggest that structural modification of functional portions of an siRNA duplex by base substitution could greatly influence allele discrimination and gene silencing, thereby contributing to enhancement of ASP-RNAi.  相似文献   

19.
20.
Yan F  Lu Y  Wu G  Peng J  Zheng H  Lin L  Chen J 《Journal of biotechnology》2012,160(3-4):146-150
Artificial miRNAs (amiRNAs) have been used successfully in various plants to silence endogenous genes or viral RNAs. The method of Schwab et al., widely used to construct amiRNAs, requires four PCRs. We describe a simplified method of constructing amiRNA based on the osa-MIR528 backbone using one PCR step by addition of prolonging sequence to the primers. The length of prolonging sequence needed in the osa-MIR528 precursor was determined. Using this method, we constructed amiRNA targeting the Nicotiana benthamiana UPF1 gene and showed that it functioned in silencing UPF1 expression in leaves when expressed transiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号