首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In a cloned copy of comG open reading frame 3 (ORF3), an in-frame deletion was generated by site-directed in vitro mutagenesis, removing the coding sequence for 15 amino acids from the central portion of this pilin-related protein. The mutagenized ORF3 was incorporated into the Bacillus subtilis chromosome, replacing the wild-type ORF3. The presence of the deleted ORF3 in the chromosome, as confirmed by Southern analysis, was associated with the complete loss of competence by the mutant strain. The ability of the mutant cells to bind exogenous radiolabeled DNA was reduced to the level of nonspecific binding of DNA by noncompetent cells. The chromosomal ORF3 mutation was partially complemented in trans by a plasmid-encoded wild-type ORF3 copy under PSPAC control upon induction of the PSPAC promoter. Using antiserum raised against a synthetic 14-mer oligopeptide deduced from the ORF3 sequence, an immunoreactive band of approximately the expected molecular size was obtained in Western blot (immunoblot) experiments with extracts of cells containing the plasmid-encoded inducible gene. A signal was also detected when cells harboring the chromosomal wild-type or mutant ORF3 in single copy were grown in competence medium. This signal was detected only in the light-buoyant-density (competent) cell fraction and only after the transition from the exponential to the stationary growth phase. In cell fractionation experiments with competent cell extracts, the immunoreactive protein was found in both the NaOH-insoluble and -soluble membrane fractions and was sensitive to proteinase K treatment of either protoplasts or whole cells.  相似文献   

5.
6.
Transformation requires specialized proteins to facilitate the binding and uptake of DNA. The genes of the Bacillus subtilis comG operon (comGA-G) are required for transformation and to assemble a structure, the pseudopilus, in the cell envelope. No role for the pseudopilus has been established and the functions of the individual comG genes are unknown. We show that among the comG genes, only comGA is absolutely required for DNA binding to the cell surface. ComEA, an integral membrane DNA-binding protein plays a minor role in the initial binding step, while an unidentified protein which communicates with ComGA must be directly responsible for binding to the cell. We show that the use of resistance to DNase to measure 'DNA uptake' reflects the movement of transforming DNA to a protected state in which it is not irreversibly associated with the protoplast, and presumably resides outside the cell membrane, in the periplasm or associated with the cell wall. We suggest that ComGA is needed for the acquisition of DNase resistance as well as for the binding of DNA to the cell surface. Finally, we show that the pseudopilus is required for DNA uptake and we offer a revised model for the transformation process.  相似文献   

7.
ComEA is a DNA receptor for transformation of competent Bacillus subtilis   总被引:3,自引:2,他引:1  
Competent cells of Bacillus subtilis efficiently bind and internalize DNA. ComEA and the seven proteins encoded by the comG operon are required in vivo for the binding step. We show here that ComEA, a bitopic membrane protein, is itself capable of high-affinity DNA binding. A domain necessary for DNA binding is located at the C-terminus of ComEA. Proteins with similar 60–80 amino acid residue domains are widespread among bacteria and higher organisms. ComEA shows a marked preference for double-stranded DNA and can bind to oligomers as small as 22 bp in length. DNA binding by ComEA exhibits no apparent base sequence specificity. Using a membrane vesicle DNA-binding assay system we show that in the absence of cell wall, ComEA is still required for DNA binding, whereas the requirement for the ComG proteins is bypassed. We conclude that the ComG proteins are needed in vivo to provide access of the binding domain of ComEA to exogenous DNA. Possible specific roles for the ComG proteins are discussed.  相似文献   

8.
The comG operon of Bacillus subtilis encodes seven proteins essential for the binding of transforming DNA to the competent cell surface. We have explored the processing of the ComG proteins and the cellular localization of six of them. All of the proteins were found to be membrane associated. The four proteins with N-terminal sequence motifs typical of type 4 prepilins (ComGC, GD, GE and GG) are processed by a pathway that requires the product of comC , also an essential competence gene. The unprocessed forms of ComGC and GD behave like integral membrane proteins. Pre-ComGG differs from pre-ComGC and pre-ComGD, in that it is accessible to proteolysis only from the cytoplasmic face of the membrane and at least a portion of it behaves like a peripheral membrane protein. The mature forms of these proteins are translocated to the outer face of the membrane and are liberated when peptidoglycan is hydrolysed by lysozyme or mutanolysin. ComGG exists in part as a disulphide-cross-linked homodimer in vivo . ComGC was found to possess an intramolecular disulphide bond. The previously identified homodimer form of this protein is not stabilized by disulphide bond formation. ComGF behaves as an integral membrane protein, while ComGA, a putative ATPase, is located on the inner face of the membrane as a peripheral membrane protein. Possible roles of the ComG proteins in DNA binding to the competent cell surface are discussed in the light of these and other results.  相似文献   

9.
The late competence protein ComF1 is required for genetic transformation in Bacillus subtilis. Because of the sequence similarities of ComF1 to known ATP-dependent DNA helicases and translocases, we have hypothesized that this protein either unwinds bound double-stranded DNA or helps in the translocation of the transforming single-stranded DNA across the cell membrane. Two important implications of this hypothesis (the association of ComF1 with the membrane and its specific requirement for DNA uptake) have been tested in this report. Using cell fractionation techniques and Western blotting analysis, we show that ComF1 is located almost exclusively on the cell membrane and that it is membrane-targeted independently of other competence proteins. Moreover, ComF1 behaves like an integral membrane protein in extractability and detergent partition assays. We also show that this protein is required for the DNA-uptake step during transformation but not for DNA binding to the ceil surface. DNA uptake is blocked in strains with null mutations or in-frame deletions in comF1 but also in strains that overproduce the ComF1 protein under competence conditions. This last observation suggests that ComF1 expression must be balanced with that of other competence proteins, with which it may interact to form a multisubunit complex for DNA uptake.  相似文献   

10.
11.
Genetic competence in Bacillus subtilis.   总被引:61,自引:5,他引:56       下载免费PDF全文
  相似文献   

12.
13.
14.
15.
Type-4 fimbriae (pili) are associated with a phenomenon known as twitching motility, which appears to be involved with bacterial translocation across solid surfaces. Pseudomonas aeruginosa mutants which produce fimbriae, but which have lost the twitching motility function, display altered colony morphology and resistance to fimbrial-specific bacteriophage. We have used phenotypic complementation of such mutants to isolate a region of DNA involved in twitching motility. This region was physically mapped to a SpeI fragment around 20 min on the P. aeruginosa PAO chromosome, remote from the major fimbrial locus (around 75 min) where the structural subunit-encoding gene (fimA/pilA) and ancillary genes required for fimbrial assembly (pilB, C and D) are found. A gene, pilT, within the twitching motility region is predicted to encode a 344-amino acid protein which has strong homology to a variety of other bacterial proteins. These include the P. aeruginosa PilB protein, the ComG ORF-1 protein from the Bacillus subtilis comG operon (necessary for competence), the PulE protein from the Klebsiella oxytoca (formerly K. pneumoniae) pulC-O operon (involved in pullulanase export), and the VirB-11 protein from the virB operon (involved in virulence) which is located on the Agrobacterium tumefaciens Ti plasmid. We have also identified other sets of homologies between P. aeruginosa fimbrial assembly (Pil) proteins and B. subtilis Com and K. oxytoca Pul proteins, which suggest that these are all related members of a specialised protein export pathway which is widespread in the eubacteria.  相似文献   

16.
By using a DNA fragment of Escherichia coli ffh as a probe, the Bacillus subtilis ffh gene was cloned. The complete nucleotide sequence of the cloned DNA revealed that it contained three open reading frames (ORFs). Their order in the region, given by the gene product, was suggested to be ORF1-Ffh-S16, according to their similarity to the gene products of E. coli, although ORF1 exhibited no significant identity with any other known proteins. The orf1 and ffh genes are organized into an operon. Genetic mapping of the ffh locus showed that the B. subtilis ffh gene is located near the pyr locus on the chromosome. The gene product of B. subtilis ffh shared 53.9 and 32.6% amino acid identity with E. coli Ffh and the canine 54-kDa subunit of signal recognition particle, respectively. Although there was low amino acid identity with the 54-kDa subunit of mammalian signal recognition particle, three GTP-binding motifs in the NH2-terminal half and amphipathic helical cores in the COOH-terminus were conserved. The depletion of ffh in B. subtilis led to growth arrest and drastic morphological changes. Furthermore, the translocation of beta-lactamase and alpha-amylase under the depleted condition was also defective.  相似文献   

17.
We have isolated a 1.0-kilobase fragment of the Bacillus subtilis chromosome which, when present in high-copy-number plasmids, caused a sporulation-proficient strain to become phenotypically sporulation deficient. This is referred to as the sporulation inhibition (Sin) phenotype. This DNA fragment, in multicopy, also inhibited the production of extracellular protease activity, which normally appears at the beginning of stationary growth. The origin of the fragment was mapped between the dnaE and spo0A genes on the B. subtilis chromosome, and its complete DNA sequence has been determined. By analysis of various deletions and a spontaneous mutant the Sin function was localized to an open reading frame (ORF) predicted from the DNA sequence. Inactivation of this ORF in the chromosome did not affect the ability of cells to sporulate. However, the late-growth-associated production of proteases and alpha-amylase was elevated in these cells. The predicted amino acid sequence of the protein encoded by this ORF had a DNA-binding domain, typically present in several regulatory proteins. We propose that the sin ORF encodes a regulatory protein that is involved in the transition from vegetative growth to sporulation.  相似文献   

18.
19.
C Gardel  K Johnson  A Jacq    J Beckwith 《The EMBO journal》1990,9(10):3209-3216
Cold-sensitive mutations in the secD locus of Escherichia coli result in severe defects in protein export at the non-permissive temperature of 23 degrees C. DNA sequence of a cloned fragment that includes the secD locus reveals open reading frames for seven polypeptide chains. Both deletions and TnphoA insertions in this clone have been used in maxicell and complementation studies to define the secD locus and its products. The secD mutations fall into two complementation groups, defining genes we have named secD and secF. These two genes comprise an operon, the first case of two genes involved in the export process being co-transcribed. The DNA sequence of the two genes along with alkaline phosphatase fusion analysis indicates that they code for integral proteins of the cytoplasmic membrane. We suggest that these two proteins may form a complex in the membrane which acts at late steps in the export process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号