首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Given the role of nutrition and body weight gain in normal development, pharmaceuticals intended to reduce appetite and promote weight loss will generate safety data that may be challenging to interpret. To aid with this, the effects of feed restriction and subsequent body weight reductions on embryo-fetal development were investigated in the rat. METHODS: Groups of 20 timed pregnant female Sprague-Dawley rats were offered Certified Rodent Diet 5002 either ad libitum or in restricted amounts of 20, 15, 10, and 7.5 g/day from Gestation Day (GD) 6-17. Clinical signs, body weights, and food consumption were recorded. Cesarean sections were performed on GD 21 and fetuses were sexed, weighed, and examined for external, visceral, and skeletal development. RESULTS: Mean maternal body weights at the end of the feed restriction period, GD 18, were reduced 0.87 x, 0.80 x, 0.69 x, and 0.63 x control mean in the 20, 15, 10, and 7.5 g/day groups, respectively. Mean body weight gains for the restriction period inclusive, GD 6-18, were 0.49 x and 0.24 x control at 10 and 7.5 g/day, respectively, and a mean body weight loss occurred at 10 and 7.5 g/day (0.95 x and 0.85 x mean GD 6 body weight, respectively). Fetal body weights were reduced 0.95 x, 0.93 x, 0.90 x, and 0.76 x control at 20, 15, 10, and 7.5 g/day, respectively. This resulted in a reduction in gravid uterine weight at 10 and 7.5 g/day. There were no external, visceral, or skeletal malformations attributed to feed restriction. There was an increase in the skeletal variation of wavy ribs and a decrease in ossification at 7.5 g/day. CONCLUSIONS: These data demonstrate that feed restriction-induced reductions in maternal gestational body weight gain of approximately 50% compared to ab lib fed rats only caused a reduction in fetal body weight. Even up to a 15% maternal gestational body weight loss had no effect on embryo viability in rats, but retarded fetal growth significantly enough to induce minor changes in skeletal development. There were no external, visceral, or skeletal malformations associated with any of the levels of maternal body weight reduction or loss.  相似文献   

2.
Hemorrhagic coagulopathy (without neurological injuries) constitutes 40% of injury-related death in civilian hospitals and on the battlefield, and the underlying contributing mechanisms remain unclear. The purpose of this study is to investigate the effects of fibrinogen availability on coagulation function after hemorrhage in pigs. Sixteen crossbred commercial Yorkshire swine were randomized into the control group (group C) (n = 8) and hemorrhage group (group H) (n = 8). Hemorrhage was induced in group H by bleeding 35% of the estimated total blood volume, followed by resuscitation with lactated Ringer solution at three times the bled volume. Pigs in group C were not hemorrhaged or resuscitated. Blood samples were withdrawn at baseline, 15 min, 3 h, 6 h, and 24 h after hemorrhage and lactated Ringer (LR) resuscitation (H-LR). Coagulation was assessed by using thrombelastography. All baseline measurements were similar between groups C and H. Hemorrhage caused a decrease in mean arterial pressure and an increase in heart rate in group H, but LR resuscitation corrected these changes within 1 h. Compared to baseline values, fibrinogen concentrations in group H decreased at 15 min, 3 h and 6 h after H-LR, but increased to double that of the baseline value at 24 h; platelet counts decreased throughout the study; clot strength was decreased at 15 min, 3 h and 6 h, but returned to baseline value at 24 h after H-LR. Hemorrhage caused decreases in fibrinogen and platelets, and compromised clot strength. The rebound of fibrinogen at 24 h restored clot strength despite platelet deficit. These data suggest the potential compensatory role of fibrinogen in restoring coagulation function in vivo after hemorrhagic shock.  相似文献   

3.
Male rodents were studied before and after undergoing one of three treatment conditions for 9 days: 1) cage control (n = 15, CON), 2) horizontal suspension (n = 15, HOZ), and 3) head-down suspension (n = 18, HDT). Testing included measurements of maximal O2 uptake (VO2 max) and select cardiovascular responses to graded treadmill exercise. VO2 max expressed on an absolute basis (ml/min) was significantly decreased after HOZ (-14.1 +/- 2.5%) and HDT (-14.3 +/- 2.0%), while being essentially unchanged in CON (-1.0 +/- 3.3%). Significant reductions in body weight were observed after both HOZ (-10.1 +/- 4.2 g) and HDT (-22.5 +/- 3.3 g), whereas CON animals exhibited a significant increase in weight (10.4 +/- 3.8 g). As a result, when VO2 max was normalized for body weight, all groups exhibited similar significant reductions of 6-7%. Although no differences in heart rate and blood pressure response to graded exercise were observed, the HDT group exhibited greater increases in mesenteric resistance at the same absolute exercise intensity. Furthermore, both suspended groups had higher iliac resistance values during exercise at similar relative exercise conditions, suggesting that muscle blood flow during treadmill running may have been reduced after suspension. In general, the decrements associated with the HOZ and HDT conditions were similar. It was concluded that reduction in exercise capacity and altered cardiovascular responses to exercise observed after 6-9 days of suspension were attributable to a combination of hypokinesia, lack of hindlimb weight bearing, or restraint, rather than to hydrostatic influences associated with HDT.  相似文献   

4.
The objective of the current study was to develop an ovine animal model for consistent study of uterine blood flow (UBF) changes during synchronized ovarian cycles regardless of season. Sheep were surgically bilaterally instrumented with uterine artery blood flow transducers and 5-7 days later implanted with a vaginal progesterone (P(4))-controlled internal drug-releasing device (CIDR; 0.3 g) for 7 days. On Day 6 of P(4), sheep were given two prostaglandin F(2 alpha) injections (7.5 mg i.m. 4 h apart). At CIDR removal, Experimental Day 0, zero (n = 9), 500 IU (n = 8), or 1000 IU (n = 7) eCG was injected i.m.; UBF was monitored continuously for 55-75 h. Jugular blood was sampled every 8 h to evaluate levels of P(4), estradiol-17 beta (E(2)beta) and luteinizing hormone (LH). The inhibitor of nitric oxide synthase, L-nitro-arginine methyl ester (L-NAME) was infused in a stepwise fashion unilaterally into one uterine artery at 48-50 h after 500 IU eCG and the effects on UBF were examined (n = 7). The zero-eCG group gradually increased UBF from a baseline of 17.4 +/- 3.9 to 80.5 +/- 1.1 ml/min. The 500-IU-eCG group increased UBF between 10 and 15 h from a baseline of 11 +/- 3.3 to 83.3 +/- 1.0 ml/min, whereas UBF for the 1000-IU-eCG group was higher (100.1 +/- 1.7 ml/min) than that seen in either of the other groups. Plasma P(4) fell to baseline within 8 h of CIDR removal, while E(2)beta rose gradually in association with elevations in UBF. LH surges occurred between 32 and 56 h after CIDR removal and the LH surge occurred earlier in the 1000-IU-eCG group than the other two groups (P < 0.01). L-NAME infusion dose dependently reduced maximum levels of UBF ipsilaterally by 54.6% +/- 6.2%, but contralaterally only by 27.4% +/- 8.5%. Regardless of season, either dose of eCG will result in analogous UBF responses. During the follicular phase, elevations in UBF are in part locally controlled by the de novo production of nitric oxide.  相似文献   

5.
Repeated determinations of blood volume and body density were made on 34 Chinese subjects (28 men and 6 women) in Taiwan over a period of 12 yr, as the mean age increased from 31 to 43 yr. Essential body mass calculated from body density and body weight showed no significant change over the 12-yr period. Changes in body weight (mean gain equals 6.0 kg) were attributable to alterations in adipose tissue weight, the density of which was found to be 0.948 g/cm3. In two-thirds of the subjects the second blood volume increased by more than 5% over the first determination, and the mean blood volume for all subjects increased by 7.5% (P less than 0.01). Correlation of the blood volume data with the findings on essential body mass and adipose tissue mass suggests that blood content per unit tissue mass increased in the second determination. This interpretation is supported by the increase in nutrient availability in Taiwan over the 12-yr period, and it may explain the lack of blood volume increase in an earlier longitudinal study on American subjects with stable nutrient availability.  相似文献   

6.
In operant conditioning experiments, two methods are commonly used to motivate laboratory rats to perform designated tasks. The first is restricting food so that rats are forced to lose 20% of body weight within one week, followed by maintenance at 80% of the baseline weight for the remainder of the experiment. The second is restricting access to water to 15 min in each 24 h period. These methods are effective in motivating the animals. There is, however, little information available on the effects on performance in tests of behaviour that are not related to operant conditioning. In addition, it is not clear if these commonly used methods of food and water restriction will lead to physiological stress as indicated by an elevation of serum corticosterone. Male rats were either food-restricted to reduce and maintain their weight at 80% of baseline weight, or were restricted to 15 min access to water every 24 h. Activity in the open field was significantly greater in food-restricted rats than in water-restricted or control rats, but freezing behaviour was similar in all experimental groups. Food-restricted rats had a higher mean serum corticosterone level than water-restricted and control rats 37 days after the start of the experimental period. These data suggested that chronically restricting food and maintenance of body weight at 80% of baseline body weight led to significant behavioural changes and physiological stress. In contrast, water restriction did not lead to changes in behaviour or corticosterone levels. A second experiment was conducted to compare the effects of food restriction to 80% of baseline body weight, as described above, with a less stringent protocol in which test rats were initially reduced to 80% of baseline weight, but were then maintained at 80% of an ad libitum fed control rat's weight. Serum corticosterone levels and adrenal gland weights were measured after the initial week of forced weight loss and after maintenance for 21 days. Forced loss of 20% of body weight in the first week led to significantly increased serum corticosterone levels and adrenal gland weights compared to ad libitum fed controls. Serum corticosterone levels and adrenal gland weights in rats maintained at 80% of their initial body weight for 21 days remained higher than ad libitum fed control rats. However, rats maintained at 80% of an ad libitum fed control rat's weight did not differ from control rats in serum corticosterone levels or adrenal gland weights at the end of the 21-day study period. Adjustment of the feeding regimen in this manner eliminated physiological evidence of chronic stress.  相似文献   

7.
The effect of short-term maternal ethanol administration on the ethanol-induced suppression of fetal breathing movements, electrocortical (ECoG) activity, and electroocular (EOG) activity was determined in the near-term fetal sheep. Twelve conscious instrumented pregnant ewes (between 125 and 139 days of gestation; term, 147 days) received 1-h intravenous infusion of 1 g ethanol/kg total body weight daily for six days (n = 6) or an equivalent volume of normal saline daily for six days (n = 6). On the seventh day, the ethanol- and saline-pretreated animals were administered 1 g ethanol/kg total body weight. A further six ewes received 1-h intravenous infusion of 1 g ethanol/kg total body weight (n = 3) or an equivalent volume of normal saline (n = 3) daily for thirteen days with both groups receiving 1 g ethanol/kg total body weight on day fourteen. Fetal ECoG and EOG activities, and fetal breathing movements were monitored continuously over the post- operative and experimental periods. Saline infusion had no significant effect on the parameters studied. Fetal breathing movements were suppressed for 8 h after the first ethanol dose, and were not significantly suppressed after fourteen days of once-daily, maternal ethanol administration. Low-voltage ECoG and EOG activities were suppressed for 3 h after the first ethanol dose, and were not significantly suppressed after seven days of repeated ethanol administration. Maternal and fetal blood gases and acid-base balance were not significantly affected by maternal ethanol administration. These data demonstrate that short-term maternal administration of ethanol results in the development of tolerance to ethanol in the mature fetus.  相似文献   

8.
The role of leptin in neonatal growth and bone metabolism has been investigated, but not simultaneously. The objectives of this study were to determine if leptin relates to bone mass during rapid growth; if consumption of maternal milk is related to elevated circulating concentrations of leptin resulting in higher fat mass; and if glucocorticoids result in higher fat mass and reduced bone mass due to elevated leptin. Thirty-two piglets were randomized to either a suckling or milk substitute plus either dexamethasone (DEX) or placebo injection for 15 days beginning at 5 days of age. Milk and blood samples were obtained at baseline, and after 15 days, blood was sampled again for measurement of leptin and bone biochemistry. Weight at baseline plus weight and length after 15 days were recorded, followed by measurement of whole body bone mineral content, bone area, and fat mass using dual energy x-ray absorptiometry. At baseline, plasma leptin was elevated in suckled piglets. Piglets that suckled had elevated fat mass as did those who received DEX. However, DEX resulted in suppressed weight and length, bone mass, and bone metabolism. Leptin was similar among groups after the 15 days. After accounting for body size and treatment effects, piglet plasma leptin was predictive of bone and fat mass. Leptin circulating early postnatally is linked to body composition, specifically fat and bone mass. Elevations in fat mass and reductions in bone mass observed after 15 days of DEX treatment are not related to leptin metabolism. Both human and porcine neonates share similar characteristics with respect to relationships of leptin with fat and bone mass.  相似文献   

9.
BACKGROUND: Feed restriction with its resultant body weight loss impacts the rodent estrous cycle; however, the manifestation of these changes in a regulatory study design has not been documented. This study reports the effects of feed restriction in the context of an FDA regulatory submission. METHODS: Adult female rats (n = 20/group; weighing approximately 200 g each) were provided rodent chow ad lib (control) or at 20, 15, 10, or 7.5 g/rat/day (g/day) during a 2-week pre-mating phase, throughout the mating phase, and up to gestation day (GD) 7. On GD 8, all animals were provided ad lib feed until necropsy on GD 14. Estrous cyclicity, mating, and fertility parameters were evaluated. RESULTS: Ad lib rats consumed approximately 20 and 28 g/day during the pre-mating and gestation phases, respectively. All measured fertility parameters in the 20 g/day group were similar to control values. In the 15 g/day group, body weight was reduced by 16% at 2 weeks, prolonged diestrus occurred, and fertility was compromised due to reductions in corpora lutea. Within 2 weeks, mean body weight in groups receiving < or = 10 g/day was reduced by > or = 29% compared to ad lib values, and overt changes in estrous cyclicity, mating, and fertility occurred. The 7.5 g/day group was not sustainable beyond the pre-mating phase. CONCLUSIONS: For this study type, feed intake at < or = 50% ad lib values (< or = 10 g/day) was inadequate due to the magnitude and rapidity of body weight effects. Estrous parameters appeared slightly more sensitive than functional measures, as body weight changes of approximately 16% appeared near the threshold of changing routinely calculated estrous cycle parameters and were later associated with reduced fertility. In general, body weight differences of 10-15% by themselves were not adverse to normal reproduction (20 g/day).  相似文献   

10.

Purpose

Rapid weight reduction is part of the pre-competition routine and has been shown to negatively affect psychological and physiological performance of Taekwondo (TKD) athletes. This is caused by a reduction of the body water and an electrolyte imbalance. So far, it is unknown whether weight reduction also affects hemorheological properties and hemorheology-influencing nitric oxide (NO) signaling, important for oxygen supply to the muscles and organs.

Methods

For this purpose, ten male TKD athletes reduced their body weight by 5% within four days (rapid weight reduction, RWR). After a recovery phase, athletes reduced body weight by 5% within four weeks (gradual weight reduction, GWR). Each intervention was preceded by two baseline measurements and followed by a simulated competition. Basal blood parameters (red blood cell (RBC) count, hemoglobin concentration, hematocrit, mean corpuscular volume, mean cellular hemoglobin and mean cellular hemoglobin concentration), RBC-NO synthase activation, RBC nitrite as marker for NO synthesis, RBC deformability and aggregation parameters were determined on a total of eight investigation days.

Results

Basal blood parameters were not affected by the two interventions. In contrast to GWR, RWR decreased activation of RBC-NO synthase, RBC nitrite, respective NO concentration and RBC deformability. Additionally, RWR increased RBC aggregation and disaggregation threshold.

Conclusion

The results point out that a rapid weight reduction negatively affects hemorheological parameters and NO signaling in RBC which might limit performance capacity. Thus, GWR should be preferred to achieve the desired weight prior to a competition to avoid these negative effects.  相似文献   

11.
Anion-exchange and reversed-phase high-performance liquid chromatographic procedures are described for the assay of the antineoplastic agent tricyclic nucleoside 5′-phosphate (TCNP) and its metabolite tricyclic nucleoside (TCN) in biological fluids. Disposition of TCNP has been studied in rabbit. TCNP is eliminated from blood and plasma with a biologic half-life of about 7.5 h. Apparent volume of distribution is 43.2 l/m2 and total body plasma TCNP clearance is 67.8 ml/min/m2. TCNP is hydrolyzed by plasma and probably other tissues to TCN which is present in blood and plasma at about one-tenth the concentration of TCNP. There is no accumulation of TCNP or TCN in blood or plasma over 2 days of administration. In 24 h 2.4% of a dose of TCNP is excreted in bile of a rabbit with a cannulated bile duct as unchanged TCNP and 30.7% as TCN. TCN is excreted in bile at an initial concentration half the maximum solubility of TCN in rabbit bile. Excretion of TCNP and TCN over 24 h in the urine of a rabbit with a cannulated bile duct is 1.5% and 5.2% of the dose, respectively.  相似文献   

12.
目的分析以荧光素异硫氰酸酯标记的菊粉(FITC.菊粉)作为标记物,通过微渗透泵,在大鼠清醒状态下,采用菊粉尿排泄率方法测定肾小球滤过率的可行性。方法将FITC-菊粉溶解在生理盐水中配成浓度为24%的溶液,经滤过后(浓度降至8%)装在微渗透泵内。大鼠腹腔植入2个盛有上述FITC-菊粉溶液的微渗透泵,随机分成2组(需要收集24h尿量组及无需收集尿量组每组各10只),分别关在代谢笼内。植泵后第7天,需要收集24h尿量组收集24h尿量及代谢笼上残留的FITC-菊粉,在大鼠清醒状态下采集血液标本;无需收集尿量组仅采集血液标本。分别根据不同的公式计算GFR。GFR的计量单位为mL/min,分别用大鼠体重及双肾重量校正后的单位为mL/min·kg体重和mL/min·g体重。结果需要收集24h尿量和无需收集尿量2种方法计算出来的GFR分别为(2.31±0.33)mL/min和(2.53±0.33)mL/min,P=0.564,两者之间差异无统计学意义;与已发表文献相比大鼠GFR平均值3.24mL/min降低了30%,说明麻醉对GFR有较明显影响,去除麻醉因素的影响后,两者数值相近。结论采用微渗透泵方法,用FITC-菊粉作为标记物,可以比较准确地测定清醒状态下大鼠GFR,尤其是无需收集尿量方法更加简便。  相似文献   

13.
Increased resting energy expenditure in cystic fibrosis   总被引:3,自引:0,他引:3  
To explore the hypothesis that there is an increased metabolic rate in cystic fibrosis, resting energy expenditure was measured by indirect calorimetry in 23 subjects with cystic fibrosis in a stable clinical state and in 42 normal control subjects. Resting energy expenditure was found to be elevated by an average of 0.45 MJ/24 h [95% confidence interval (CI) = 0.26-0.64, t = 4.91, P less than 0.001] (108 kcal/24 h), or 9.2% above expected values derived from the regression relating resting energy expenditure to whole body weight and sex in control subjects. When related to lean body mass, values were still elevated by 0.36 MJ/24 h (95% CI = 0.18-0.53, t = 4.15, P less than 0.001) (86 kcal/24 h), or 7.2%. The increased values were found to be independent of age, sex, or body size. There were significant correlations between increased values and poor pulmonary function as measured by the ratio of the forced expiratory volume in 1 s to forced vital capacity (r = -0.44, P less than 0.05) and subclinical infection as indicated by the blood leukocyte count (r = 0.40, P less than 0.05). However, the correlations were low, suggesting that other factors may contribute to the increased resting energy expenditure, possibly including the putative metabolic defect in cystic fibrosis.  相似文献   

14.
The metabolism of eight men (mean: age, 26.0 years; maximal oxygen consumption, 65.0 ml.kg-1.min-1; body fat, 10.3%) was measured on counterbalanced control (baseline values for 8 h) and experimental (post 35 km run values for 8 h) days. The excess postexercise volume of oxygen consumed of 32.37 l and increase in energy used of 594 kJ during the 8 h after completion of the run were equivalent to average increases of 23.7 and 21.1%, respectively, when compared with time-matched controls. Furthermore, the oxygen uptake and energy expenditure were still elevated by 12.7 (P less than 0.0005) and 9.7% (P = 0.001), respectively, at the end of this period but the fact that they had returned to baseline 24 h after the 35 km road run contrasts with some reports in the literature that metabolism is still elevated at this time following less demanding exercise intensities. Rectal temperature was elevated by 2.3 degrees C at the end of the run but the difference had decreased to 0.2 degrees C by 7 h postexercise. The respiratory exchange ratio and changes in blood metabolites (nonesterified fatty acids, glycerol and ketone bodies) indicated a greater postexercise utilisation of fat notwithstanding a 6300 kJ meal ingested on both control and experimental days. The highest measured serum creatine kinase enzyme activity of 1151 U.l-1 (P less than 0.05) occurred 24 h postexercise, as compared with the control value of 145 U.l-1, and indicates the possibility of skeletal muscle damage.  相似文献   

15.
A model utilizing 25 degree head-down tilt (HDT) and incorporated with chronic catheterization and renal micropuncture techniques in rats was employed to study alterations in renal function induced by HDT. Renal function and extracellular volume measurements were performed after 24 h, 4 days, and 7 days of HDT in conscious rats and compared with their own control measurements and to nontilted but similarly restrained rats. After 24 h HDT, glomerular filtration rate (GFR) increased 19 +/- 8% and renal plasma flow (RPF) increased 18 +/- 8% with increases in urine flow rate, Na+, and K+ excretion in conscious rats. These increases after 24 h were associated with an increase in extracellular volume of 16 +/- 3% (P less than 0.01). In the nontilted controls, there was a decrease in extracellular volume after 24 h of suspension. After 7 days of HDT, GFR was decreased by 7 +/- 1% (P less than 0.01), but RPF and extracellular fluid volume were not different from control values. However, RPF and GFR increased in the nontilted rats after 7 days. After 7 days of HDT renal micropuncture studies demonstrated that single-nephron filtration rate was also decreased from 43 +/- 2 to 31 +/- 3 nl/min (P less than 0.05) due solely to reductions in the glomerular ultrafiltration coefficient (0.11 +/- 0.01 to 0.07 +/- 0.01 nl.s-1 X mmHg-1, P less than 0.05). There was a dissociation between GFR and water and Na+ excretion at days 4 and 7 of HDT not observed in the nontilt restraint controls.  相似文献   

16.
Two systems are described for the collection of 24 h urine samples from the common marmoset (Callithrix jacchus). Using 84 adult animals, 1210 24-h samples were collected. Mean urinary excretion was 14.4 +/- 7.5 ml/24 h (n = 1210, mean +/- SD). No differences were observed between sexes (for 52 females, 24 h volume = 15.1 +/- 8.0 ml; for 32 males, 24 h volume = 12.5 +/- 6.0 ml). No significant differences were observed between pregnant and non-pregnant females with respect to 24 h urine volume, and bilateral gonadectomy did not influence subsequent urinary excretion in either sex. For 161 pairs of observations, the intake of drinking water (11.7 +/- 10.2 ml/24 h) and the volume of urine excreted (12.6 +/- 7.1 ml/24 h) showed a positive correlation (r = 0.406 d.f. 159, P less than 0.001: y = 0.558x + 4.247).  相似文献   

17.
Repeated blood collection is one of the most common techniques performed on laboratory animals. However, a non-lethal protocol for blood collection from zebrafish has not been established. The previous methods for blood collection from zebrafish are lethal, such as lateral incision, decapitation and tail ablation. Thus we have developed a novel “repeated” blood collection method, and present here a detailed protocol outlining this procedure. This method is minimally invasive and results in a very low mortality rate (2.3%) for zebrafish, thus enabling repeated blood sampling from the same individual. The maximum volume of blood sampling is dependent on body weight of the fish. The volume for repeated blood sampling at intervals should be ≤0.4% of body weight every week or ≤1% every 2 weeks, which were evaluated by measurements of blood hemoglobin. Additionally, hemoglobin, fasting blood glucose, plasma triacylglycerol (TG) and total cholesterol levels in male and female adult zebrafish were measured. We also applied this method to investigate the dysregulation of glucose metabolism in diet-induced obesity. This blood collection method will allow many applications, including glucose and lipid metabolism and hematological studies, which will increase the use of zebrafish as a human disease model organism.  相似文献   

18.
The objective of this study was to further explore the cartilage volume changes in knee osteoarthritis (OA) over time using quantitative magnetic resonance imaging (qMRI). These were correlated with demographic, clinical, and radiological data to better identify the disease risk features. We selected 107 patients from a large trial (n = 1,232) evaluating the effect of a bisphosphonate on OA knees. The MRI acquisitions of the knee were done at baseline, 12, and 24 months. Cartilage volume from the global, medial, and lateral compartments was quantified. The changes were contrasted with clinical data and other MRI anatomical features. Knee OA cartilage volume losses were statistically significant compared to baseline values: -3.7 +/- 3.0% for global cartilage and -5.5 +/- 4.3% for the medial compartment at 12 months, and -5.7 +/- 4.4% and -8.3 +/- 6.5%, respectively, at 24 months. Three different populations were identified according to cartilage volume loss: fast (n = 11; -13.2%), intermediate (n = 48; -7.2%), and slow (n = 48; -2.3%) progressors. The predictors of fast progressors were the presence of severe meniscal extrusion (p = 0.001), severe medial tear (p = 0.005), medial and/or lateral bone edema (p = 0.03), high body mass index (p < 0.05, fast versus slow), weight (p < 0.05, fast versus slow) and age (p < 0.05 fast versus slow). The loss of cartilage volume was also slightly associated with less knee pain. No association was found with other Western Ontario McMaster Osteoarthritis Index (WOMAC) scores, joint space width, or urine biomarker levels. Meniscal damage and bone edema are closely associated with more cartilage volume loss. These data confirm the significant advantage of qMRI for reliably measuring knee structural changes at as early as 12 months, and for identifying risk factors associated with OA progression.  相似文献   

19.
Late instar larvae starved at 53% r.h. maintained constant haemolymph osmotic pressure (O.P.) for 12 days with only a small rise from 353 to 363 mOsm at day 17 when haemolymph volume was nearly zero. Total body water was also nearly constant for the first 12 days and then dropped from 62 to 58·5%. At low r.h. for 7 days, starved larvae lost more water than those at high r.h., but haemolymph O.P. ranged from 351 to 363 mOsm, and total body water remained nearly constant. Measured values were lower than expected from actual water losses, requiring that solutes be removed from the blood. Larvae starved at 53% r.h. for 7 days and then given distilled water took in 60 per cent of the starved weight and increased haemolymph water volume by 55 per cent. O.P. dropped only to 326 mOsm as against the expected 210 mOsm. More solute was mobilized than had been apparently sequestered during starvation. Thus body fluids are closely regulated despite wide internal and external changes.  相似文献   

20.
Healthy albino male rats were exposed to a simulated high altitude (HA) equivalent to 25000 ft (7620 m) for 6 h daily, continuously for 21 days to study the feeding behaviour. The 24-h food and water intake and body weight once in 3 days were recorded. Blood samples were drawn once a week from the retro-orbital venous plexus for blood sugar analysis. All the parameters were recorded before, during and after exposure to simulated HA. The results show a decrease in 24-h food and water intake and decreased gain in body weight during hypoxic exposure, which showed a tendency to come back to control during the post-exposure period. The blood sugar reflected a state of mild hyperglycaemia during exposure to HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号