首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among all K2P channels, TASK-3 shows the most widespread expression in rat brain, regulating neuronal excitability and transmitter release. Using a recently purified and characterized polyclonal monospecific antibody against TASK-3, the entire rat brain was immunocytochemically analyzed for expression of TASK-3 protein. Besides its well-known strong expression in motoneurons and monoaminergic and cholinergic neurons, TASK-3 expression was found in most neurons throughout the brain. However, it was not detected in certain neuronal populations, and neuropil staining was restricted to few areas. Also, it was absent in adult glial cells. In hypothalamic areas, TASK-3 was particularly strongly expressed in the supraoptic and suprachiasmatic nuclei, whereas other hypothalamic nuclei showed lower protein levels. Immunostaining of hippocampal CA1 and CA3 pyramidal neurons showed strongest expression, together with clear staining of CA3 mossy fibers and marked staining also in the dentate gyrus granule cells. In neocortical areas, most neurons expressed TASK-3 with a somatodendritic localization, most obvious in layer V pyramidal neurons. In the cerebellum, TASK-3 protein was found mainly in neurons and neuropil of the granular cell layer, whereas Purkinje cells were only faintly positive. Particularly weak expression was demonstrated in the forebrain. This report provides a comprehensive overview of TASK-3 protein expression in the rat brain.  相似文献   

2.
We describe a monoclonal antibody directed against a neuron-specific mitochondrial protein from rat brain. On protein blots the antibody recognizes a single polypeptide of apparent molecular weight 23,000. By solid-phase immunoassay the antigen was detected in all brain regions tested but was not detected in nonneural tissues. Within neurons, the antibody stains cytoplasmic granules that immunoelectron microscopy shows are mitochondria, hence the designation MIT-23. Immunocytochemical staining of the cerebellar cortex showed that MIT-23 occurs in all the neuronal types but is absent from glial and other nonneuronal cells. During neonatal development of the cerebellum, MIT-23 appears in neurons after their final cell division or migration is completed, suggesting that specific proteins associated with mitochondria participate in neuronal maturation.  相似文献   

3.
4.
The localization of different classes of alcohol dehydrogenases (ADH) in the brain is of great interest because of their role in both ethanol and retinoic acid metabolism. Conflicting data have been reported in the literature. By Northern blot and enzyme activity analyses only class III ADH has been detected in adult brain specimens, while results from riboprobe in situ hybridization indicate class I as well as class IV ADH expression in different regions of the rat brain. Here we have studied the expression patterns of three ADH classes in adult rat, mouse and human tissues using radioactive oligonucleotide in situ hybridization. Specificity of probes was tested on liver and stomach control tissue, as well as tissue from class IV ADH knock-out mice. Only class III ADH mRNA was found to be expressed in brain tissue of all three investigated species. Particularly high expression levels were found in neurons of the red nucleus in human tissue, while cortical neurons, pyramidal and granule cells of the hippocampus and dopamine neurons of substantia nigra showed moderate expression levels. Purkinje cells of cerebellum were positive for class III ADH mRNA in all species investigated, whereas granular layer neurons were positive only in rodents. The choroid plexus was highly positive for class III ADH, while no specific signal for class I or class IV ADH was detected. Our results thus support the notion that the only ADH expressed in adult mouse, rat and human brain is class III ADH.  相似文献   

5.
Nitric oxide (NO) is an ubiquitous intercellular messenger molecule synthesised from the amino acid arginine by the enzyme nitric oxide synthase (NOS). A number of NOS iso-enzymes have been identified, varying in molecular size, tissue distribution and possible biological role. To further understand the role of NO in the regulation of neuroendocrine function in the sheep, we have purified and characterised ovine neuronal NOS (nNOS) using anion exchange, affinity and size-exclusion chromatography. SDS-PAGE reveals that ovine nNOS has an apparent denatured molecular weight of 150 kDa which correlates well with the other purified nNOS forms such as rat, bovine and porcine. The native molecular weight predicted by size-exclusion chromatography was 200 kD which is in close agreement with that found for porcine and rat nNOS. Internal amino acid sequences generated from tryptic digests of the purified ovine nNOS are highly homologous to rat nNOS. There was no significant difference in the cofactor dependence and kinetic characteristics of ovine nNOS when compared to rat and bovine nNOS, (Km for arginine 2.8, 2.0 and 2.3 μM respectively). A polyclonal anti-peptide antibody directed toward the C-terminal end of the rat nNOS sequence showed full cross-reactivity with the purified ovine nNOS. Immunohistochemical and Western analysis using this antiserum demonstrate the expression of nNOS in the cortex, cerebellum, hypothalamus and pituitary of the sheep. The lack of staining in the neural and anterior lobes of the pituitary seems to suggest that NOS plays a varied role in the control of endocrine systems between species.  相似文献   

6.
7.
We examined the expression of the KCC2 isoform of the K-Cl cotransporter in the developing and adult brain, using an affinity-purified antibody directed against a unique region of the KCC2 protein. Expression was shown to be limited to neurons at the cell bodies and cell processes in the hippocampus and cerebellum. Expression seemed to be the highest at the end of processes that originated from the CA1 pyramidal cells. Developmental up-regulation of KCC2 expression was demonstrated in the entire rat brain by Northern and Western blot analyses, and in the hippocampus by immunofluorescence. Level of KCC2 expression was minimal at birth and increased significantly during postnatal development. This pattern of expression was opposite to the one of the Na-K-2Cl cotransporter that is highly expressed in immature brain and decreases during development. The up-regulation of the K-Cl cotransporter expression is consistent with the developmental down-regulation of the intracellular Cl- concentration in neurons. The level of intracellular Cl-, in turn, determines the excitatory versus inhibitory response of the neurotransmitter gamma-aminobutyric acid in the immature versus mature brain. Finally, KCC2 expression was shown in dorsal root ganglion neurons, demonstrating that expression of the cotransporter is not strictly confined to central nervous system neurons.  相似文献   

8.
Metallothionein III (MT-III) is a brain-specific member of the metallothionein family and binds zinc in vivo. In order to confirm the precise localization of MT-III in normal rat brain and the change of MT-III expression after transient whole brain ischemia, we raised a high affinity phagemid-antibody specific for rat MT-III. Immunohistochemical analysis revealed that MT-III in normal brain is localized abundantly in neuronal cell bodies in CA1-3 regions of hippocampus, dentate gyrus, cerebral cortex, olfactory bulb and Purkinje cells in cerebellum. This expression pattern of MT-III was similar to that of MT-III mRNA observed by in situ hybridization studies. ELISA and Northern blot analysis revealed that MT-III protein as well as mRNA levels were up-regulated in cerebrum soon after ischemic stress. Immunohistochemical analysis also demonstrated intense staining in neurons in injured brain after ischemia, which distributed in the same regions as in normal brain. These results suggest that MT-III plays an important role in protecting neurons from ischemic insult by reducing neurotoxic zinc levels and inhibits uncontrolled growth of neurites after ischemia.  相似文献   

9.
CB1-type cannabinoid receptors in the brain mediate effects of the drug cannabis. Anandamide and sn-2 arachidonylglycerol (2-AG) are putative endogenous ligands for CB1 receptors, but it is not known which cells in the brain produce these molecules. Recently, an enzyme which catalyses hydrolysis of anandamide and 2-AG, known as fatty acid amide hydrolase (FAAH), was identified in mammals. Here we have analysed the distribution of FAAH in rat brain and compared its cellular localization with CB1-type cannabinoid receptors using immunocytochemistry. High concentrations of FAAH activity were detected in the cerebellum, hippocampus and neocortex, regions of the rat brain which are enriched with cannabinoid receptors. Immunocytochemical analysis of these brain regions revealed a complementary pattern of FAAH and CB1 expression with CB1 immunoreactivity occurring in fibres surrounding FAAH-immunoreactive cell bodies and/or dendrites. In the cerebellum, FAAH was expressed in the cell bodies of Purkinje cells and CB1 was expressed in the axons of granule cells and basket cells, neurons which are presynaptic to Purkinje cells. The close correspondence in the distribution of FAAH and CB1 in rat brain and the complementary pattern of FAAH and CB1 expression at the cellular level provides important new evidence that FAAH may participate in cannabinoid signalling mechanisms of the brain.  相似文献   

10.
B/K protein is a recently isolated member of the double C2-like-domain protein family, which is highly abundant in rat brain. We generated high-titer rabbit polyclonal antibodies with specificity to the 55-kDa rat B/K protein, and examined the expression pattern of B/K protein in rat brain using an immunohistochemical staining method. Immunoreactivity to B/K protein was widely found in distinct regions of rat brain: strongly in the hypothalamus, most of the circumventricular organs, the locus coeruleus, the A5 neurons of the pons, and the anterior pituitary; moderately in the anterior olfactory nucleus, the raphe nucleus, the subfornical organ, and the median eminence; and faintly in the olfactory bulb, the telencephalon, the substantia nigra pars compacta, and the ventral tegmental area. In contrast, immunoreactivity to B/K protein was not observed in the thalamus, the cerebellum, the posterior pituitary, or the spinal cord. In most of the B/K-expressing neurons, immunoreactivity was expressed mainly in soma but not in nerve fibers. B/K was also expressed in nonneuronal cells such as the tanycytes and the subcommissural organ. In the vasopressin-secreting supraoptic and paraventricular nuclei of the hypothalamus, the site where B/K cDNA was originally isolated from, all of the neurons showing vasopressin immunoreactivity also expressed B/K protein, suggesting an overlap of their expression patterns.  相似文献   

11.
Rabbit polyclonal antibodies were raised to rat Kir2.0 (Kir2.1, Kir2.2 and Kir2.3) inwardly rectifying potassium ion channel proteins. The antibody specificities were confirmed by immunoprecipitation of [35S]-methionine-labelled in vitro translated channel proteins and western blotting. Immunohistochemistry revealed a different patterns of expression of Kir2.0 subfamily proteins in the rat hind-brain (cerebellum and medulla) and fore-brain (hippocampus). Notably, only Kir2.2 protein was detected in the cerebellum and medulla, Kir2.1, Kir2.2 and Kir2.3 proteins were expressed in the hippocampus and immunostaining was not limited to neuronal cell types. Anti-Kir2.1 (fore-brain only) and anti-Kir2.2 (fore- and hind-brain) antibodies showed positive staining in macroglia, endothelia, ependyma and vascular smooth muscle cells. In contrast, anti-Kir2.3 (fore-brain only) immunostaining was limited to neurons, macroglia and vascular smooth muscle. These results indicate that specific regions within the rat fore- and hind-brain have differential distributions of inwardly rectifying potassium ion channel proteins. Accepted: 12 October 1999  相似文献   

12.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   

13.
Neuronal nuclear antigen (NeuN), discovered in mice brain cell nuclei by Mullen et al. (1992), is used as an excellent marker of post-mitotic neurons in vertebrates. In this study, the expression pattern of NeuN was examined in the Xenopus brain to explore phylogenetic differences in NeuN expression. Anti-NeuN antibody showed selective staining in mouse and Xenopus brain extracts, but the number and molecular weight of the bands differed in Western blotting analysis. In immunostaining, anti-NeuN antibody showed selective staining of neurons, but not glial cells, in the Xenopus brain. Most neurons, including olfactory bulb mitral cells and cerebellar Purkinjie cells, which show no immunoreactivity in birds/mammals, showed NeuN immunoreactivity in Xenopus. This study revealed that anti-NeuN antibody is a useful marker of post-mitotic neurons in amphibians, but it also stains neurons that show no reactivity in more derived animals.  相似文献   

14.
15.
Neuronal nitric-oxide synthase (nNOS) has a PSD-95/Dlg/ZO-1 (PDZ) domain that can interact with multiple proteins. nNOS has been known to interact with PSD-95 and a related protein, PSD-93, in brain and with alpha1-syntrophin in skeletal muscle in mammals. In this study, we have purified an nNOS-interacting protein from bovine brain using an affinity column made of Sepharose conjugated with glutathione S-transferase-rat nNOS fusion protein and identified it as alpha1-syntrophin by microsequencing. Immunostaining of primary cultures of rat embryonic brain neuronal cells with antibodies against these proteins showed that nNOS and alpha1-syntrophin were colocalized in neuronal cell bodies and neurites. Immunohistochemical analysis indicated that the nNOS- and alpha1-syntrophin-like immunoreactive substances were highly expressed in the rat hypothalamic suprachiasmatic nucleus (SCN) and paraventricular nucleus. In the SCN, nNOS- and alpha1-syntrophin-like immunoreactive substances were colocalized in the same neurons as detected by confocal microscopy. These results indicate that nNOS in brain interacts with alpha1-syntrophin in specific neurons of the SCN and paraventricular nucleus and that this interaction might play a physiological role in functions of these neurons.  相似文献   

16.
The Bin1/Amphiphysin II gene encodes at least seven alternately spliced adapter proteins that have been implicated in membrane dynamics and nuclear processes. Nuclear localized Bin1 polypeptides have tumor suppressor and proapoptotic activities, suggesting that Bin1 may suppress cancer in tissues where nuclear expression may occur. One question is the extent to which human tissues express nuclear Bin1 isoforms. A secondary issue has been the need for a specific antibody that can detect all the splice isoforms expressed by the human, mouse, and rat Bin1 genes. Using a novel mouse monoclonal antibody with these characteristics, we performed an immunohistochemical analysis of Bin1 expression in a panel of normal human tissues. We also compared the expression profile of Bin1 in normal or malignant tissues derived from human prostate, where Bin1 is a candidate tumor suppressor gene. In brain, a distinct nuclear staining pattern overlapped with a cytosolic staining pattern present in certain layers of the cerebral cortex and cerebellum. Bone marrow cells displayed mainly nuclear localization whereas peripheral lymphoid cells exhibited mainly cytosolic localization. In several epithelial tissues, nuclear or nucleocytosolic staining patterns were displayed by basal cells in skin, breast, or prostate, whereas cytosolic or plasma membrane-associated staining patterns were noted in gastrointestinal cells. Interestingly, a striking gradient of expression was observed in gastrointestinal epithelia, particularly in the large intestine, with the strongest staining displayed by cells destined to undergo apoptosis at the villus tip. In prostate, Bin1 staining was frequently absent in cases of primary prostate adenocarcinoma. This study used a novel reagent to document the extent of expression of nuclear Bin1 isoforms, which exhibit cancer suppression and proapoptotic activity in human cells.  相似文献   

17.
An antiserum raised against an enriched preparation of isolated rat cerebellar Purkinje cells has been studied with the indirect immunofluorescence technique to establish its specificity and localisation. On cryostat sections, the unabsorbed IgG fraction stained large and small neurons in all brain regions. This staining was greatly reduced in the forebrain after the serum was absorbed on heart and liver membranes, and abolished after additional absorption on cerebral membranes. In the cerebellum, these absorptions also removed background staining in the internal granular layer, while the perikarya and dendrites of the Purkinje cells remained positive. Large neurons in the deep cerebellar nuclei and the brain stem were also stained, but further absorption on membranes prepared from the brain stem removed staining in both these areas without affecting that of the Purkinje cells. Thus, using immunohistochemical screening, it was possible through a series of absorptions to obtain a serum that is specific to cerebellar Purkinje cells.  相似文献   

18.
We found that E-cadherin (uvomorulin) is transiently expressed in restricted regions of the metencephalon, mesencephalon and diencephalon of mouse embryonic brain. This expression first occurred in parts of the mesencephalon and diencephalon at around E9.5, and subsequently extended to the primordia of cerebellum, the dorsal midline of mesencephalon and some other regions of the embryonic brain. These E-cadherin expressions ceased by E15 except at the dorsal midline. Immunohistological analyses showed that E-cadherin-positive cells are radially arranged in the neural tube and the E-cadherin-positive regions are sharply demarcated from E-cadherin-negative regions. Axons extending from some of the E-cadherin-positive regions also expressed this molecule. When embryonic brains were dissociated into single cells and cultured as monolayers, E-cadherin-positive cells formed clusters that were segregated from E-cadherin-negative cells. E9.5 brain fragments containing metencephalon and mesencephalon were isolated, explanted on Nucleopore filters and cultured in the absence or presence of antibodies to E-cadherin. This antibody treatment removed most of the E-cadherin molecules from the explants and consequently affected their growth pattern. To analyze cellular events induced by the antibody treatment, we stained these explants with an antiserum to En whose distribution was found to overlap in part with that of E-cadherin and found that the pattern of En staining was altered by the anti-E-cadherin antibody treatment. These results suggest that the local and transient expression of E-cadherin in embryonic brain is involved in regional pattern formation in this organ.  相似文献   

19.
Fetal baroreflex responsiveness increases in late gestation. An important modulator of baroreflex activity is the generation of nitric oxide in the brainstem nuclei that integrate afferent and efferent reflex activity. The present study was designed to test the hypothesis that nitric oxide synthase (NOS) isoforms are expressed in the fetal brainstem and that the expression of one or more of these enzymes is reduced in late gestation. Brainstem tissue was rapidly collected from fetal sheep of known gestational ages (80, 100, 120, 130, 145 days gestation and 1 day and 1 wk postnatal). Neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) mRNA was measured using real-time PCR methodology specific for ovine NOS isoforms. The three enzymes were measured at the protein level using Western blot methodology. In tissue prepared for histology separately, the cellular pattern of immunostaining was identified in medullae from late-gestation fetal sheep. Fetal brainstem contained mRNA and protein of all three NOS isoforms, with nNOS the most abundant, followed by iNOS and eNOS, respectively. nNOS and iNOS mRNA abundances were highest at 80 days' gestation, with statistically significant decreases in abundance in more mature fetuses and postnatal animals. nNOS and eNOS protein abundance also decreased as a function of developmental age. nNOS and eNOS were expressed in neurons, iNOS was expressed in glia, and eNOS was expressed in vascular endothelial cells. We conclude that all three isoforms of NOS are constitutively expressed within the fetal brainstem, and the expression of all three forms is reduced with advancing gestation. We speculate that the reduced expression of NOS in this brain region plays a role in the increased fetal baroreflex activity in late gestation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号