首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatase type 1 catalytic subunit (PP1c) is a serine/threonine phosphatase involved in the dephosphorylation of many proteins in eukaryotic cells. It associates with several known targeting or regulatory subunits that directly regulate PP1c activity toward specific substrates. The recently identified Phosphatase Nuclear Targeting Subunit (PNUTS) binds to PP1c and inhibits PP1 activity toward phosphorylase a. One of the substrates of PP1c has been shown to be the cell cycle regulatory protein, Retinoblastoma (pRb). In this study, we show that PNUTS dissociates from PP1c under mildly hypoxic cell growth conditions that lead to an increase of PP1c activity toward pRb. We developed an assay that measures pRb-directed PP1c activity and show that a GST-PNUTS fusion protein inhibits phosphatase activity toward pRb when using PP1c from cell lysates, GST-PP1c, or purified PP1c. These studies suggest that PNUTS is involved in the regulation of PP1c activity toward pRb.  相似文献   

2.
Continuing our research aimed at obtaining new compounds with high affinity and selectivity toward alpha(1)-AR, a new series of arylpiperazine derivatives was designed, synthesized, and biologically tested. The new compounds 1-17 are characterized by a phenylphthalazin-1(2H)-one fragment connected through an alkyl chain to an arylpiperazine residue. The pharmacological profile of these compounds was evaluated for their affinity and selectivity toward alpha(1)-AR, alpha(2)-AR and toward 5HT(1A) serotoninergic receptor. A discussion on the structure-activity relationship (SAR) of these compounds is also reported.  相似文献   

3.
Environmental xenoestrogens have been implicated in human reproductive disorders and an increased incidence of breast cancer. Sulfation, a Phase II detoxification mechanism involving the cytosolic sulfotransferases (STs), may be an important mechanism in vivo for fending off these compounds. In this study, we report on the molecular cloning, expression, and purification of two human cytosolic STs, SULT2B1a and SULT2b1b. The activities of these two enzymes, as well as the other eight known human cytosolic STs previously prepared, toward representative environmental xenoestrogens were examined. Activity data showed that P-form (SULT1A1) PST displayed the highest activity toward these compounds, while SULT1C ST #2 also showed considerable activity, indicating that these enzymes may play a more important role in detoxification of environmental xenoestrogens. SULT1C ST #1, SULT2B1a ST, SULT2B1b ST and NST showed negligible or undetectable activity toward these compounds. The other four enzymes, M-form (SULT1A3) PST, SULT1B2 ST, SULT2A1 ST and SULT1E ST showed intermediate levels of activity toward some of these compounds. Kinetic studies on the sulfation of xenoestrogens by P-form (SULT1A1) PST were performed. The results are interpreted in the context of the endocrine-disrupting nature of these xenoestrogens.  相似文献   

4.
Environmental xenoestrogens have been implicated in human reproductive disorders and an increased incidence of breast cancer. Sulfation, a Phase II detoxification mechanism involving the cytosolic sulfotransferases (STs), may be an important mechanism in vivo for fending off these compounds. In this study, we report on the molecular cloning, expression, and purification of two human cytosolic STs, SULT2B1a and SULT2b1b. The activities of these two enzymes, as well as the other eight known human cytosolic STs previously prepared, toward representative environmental xenoestrogens were examined. Activity data showed that P-form (SULT1A1) PST displayed the highest activity toward these compounds, while SULT1C ST #2 also showed considerable activity, indicating that these enzymes may play a more important role in detoxification of environmental xenoestrogens. SULT1C ST #1, SULT2B1a ST, SULT2B1b ST and NST showed negligible or undetectable activity toward these compounds. The other four enzymes, M-form (SULT1A3) PST, SULT1B2 ST, SULT2A1 ST and SULT1E ST showed intermediate levels of activity toward some of these compounds. Kinetic studies on the sulfation of xenoestrogens by P-form (SULT1A1) PST were performed. The results are interpreted in the context of the endocrine-disrupting nature of these xenoestrogens.  相似文献   

5.
Guidance of primordial germ cell migration by the chemokine SDF-1   总被引:19,自引:0,他引:19  
The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.  相似文献   

6.
We report the design and synthesis of a new class of piperazine-pyridazinone analogues. The arylpiperazine moiety, the length of the spacer, and the terminal molecular fragment were varied to evaluate their influence in determining the affinity of the new compounds toward the alpha1-adrenergic receptor (alpha1-AR), alpha2-adrenergic receptor (alpha2-AR), and the 5-HT1A serotoninergic receptor (5-HT1AR). Biological data showed that most of the compounds have an alpha1-AR affinity in the nanomolar or subnanomolar range, while affinity toward the other two receptors was lower in most cases. However, several of the tested compounds also showed very good (in the nanomolar range) or moderate affinity toward the 5-HT1AR subtype.  相似文献   

7.
The canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser(916), a modification frequently used as a surrogate marker of PKD1 activity. PKD1 also is cleaved by caspase-3 at a site in the C1-PH interdomain during apoptosis; the functional consequences of this cleavage event remain uncertain. This study shows that PKD1-Δ1-321 (an N-terminal deletion mutant lacking the C1 domain and flanking sequence that models the catalytic fragment that accumulates during apoptosis) and PKD1-CD (the isolated catalytic domain) display high basal Ser(916) autocatalytic activity and robust activity toward CREBtide (a peptide substrate) but little to no activation loop autophosphorylation and no associated activity toward protein substrates, such as cAMP-response element binding protein and cardiac troponin I. In contrast, PKD1-ΔPH (a PH domain deletion mutant) is recovered as a constitutively active enzyme, with high basal autocatalytic activity and high basal activity toward peptide and protein substrates. These results indicate that individual regions in the regulatory domain act in a distinct manner to control PKD1 activity. Finally, cell-based studies show that PKD1-Δ1-321 does not substitute for WT-PKD1 as an in vivo activator of cAMP-response element binding protein and ERK phosphorylation. Proteolytic events that remove the C1 domain (but not the autoinhibitory PH domain) limit maximal PKD1 activity toward physiologically relevant protein substrates and lead to a defect in PKD1-dependent cellular responses.  相似文献   

8.
The major extracellular alginate lyase activities secreted by a Gram-negative, facultative bacterium associated with actively growing Sargassum fluitans have been resolved an examined for substrate specificity. A fraction excluded from Sephadex G-75 was equally active toward (1----4)-beta-D-mannuronan, (1----4)-alpha-L-guluronan, and alginate with the formation of di- and tri-saccharides as apparent limit products and oligo-saccharides indicative of an endolytic mechanism. A second fraction which was included during G-75 filtration was inactive toward D-mannuronan and 4 times more active toward L-guluronan than native alginate. Proton magnetic resonance spectrometry identified the primary product of this enzyme as O-(4-deoxy-alpha-L-erythro-hex-4-enopyranosyluronic acid)-(1----4)-O-(alpha-L-gulopyranosyluronic acid)-(1----4)-O-alpha-L-gulopyranuronic acid. The L-guluronan-specific enzyme requires 0.5 M NaCl for maximal activity and has been purified as a monomeric protein having an apparent molecular mass of 38 kD and an approximate pI of 4.5. The predominant formation of trisaccharide over the course of a reaction showed a primarily exolytic mechanism, indicating an enzyme activity unique from any previously reported.  相似文献   

9.
A homologous series of omega,omega,omega-triphenylalcohols and corresponding omega,omega,omega-triphenylalkyl-UDP derivatives was synthesized and tested as inhibitors of UDP-glucuronosyltransferase (UGT) activity in rat liver microsomes, with 1-naphthol, testosterone and bilirubin as substrates. Introduction of the UDP moiety in the triphenylalcohols increased their inhibition potency markedly toward the isoforms which glucuronidate 1-naphthol and testosterone, but strongly decreased that toward bilirubin. The inhibiting potency of the UDP-derivatives increased as a function of the length of the hydrocarbon chain. The best inhibitor 7,7,7-triphenylheptyl-UDP showed an I50 of 30 and 10 microM for 1-naphthol and testosterone glucuronidation, respectively; even a 1 mM concentration of the compound had little, if any, effect on bilirubin glucuronidation. The inhibition by 7,7,7-triphenylheptyl-UDP was mixed-type toward 1-naphthol, and non competitive toward testosterone (apparent K(i) 30 microM and 1.7 microM, respectively); on the other hand, the inhibition was competitive toward the common substrate UDP-glucuronic acid (apparent K(i) 1.9-1.2 microM). In addition, 7,7,7-triphenylheptyl-UDP (0.25-0.50 mM) almost inhibited glucuronidation of 1-naphthol and testosterone catalyzed by the recombinant rat liver UGT-2B1 and human liver UGT-1A1, whose cDNA has been expressed in V79 cells. In conclusion, the data indicate that 7,7,7-triphenyheptyl-UDP interacted competitively with the UDP binding site of UGT. The results also indicate that it is possible to design transition state analogue inhibitors with specificity for different UGT forms.  相似文献   

10.
To gain further insight into herbicide detoxification, we studied the herbicide activity and specificity toward glutathione S-transferases from human and rice. In this study, the genes of the plant specific phi and tau class GST enzymes from Oryza sativa (OsGST) and human pi class GST enzyme (hGSTP1-1) were cloned and expressed in Escherichia coli with the pET and pKK vector systems, respectively. The gene products were purified to homogeneity by GSH Sepharose affinity column chromatography. The herbicide specificity of the enzymes was investigated by enzyme-catalyzed conjugation of GSH with chloroacetanilide, diphenylether and chloro-s-triazine herbicides. The hGSTP1-1 showed very high specific activity toward atrazine. On the other hand, the phi class OsGST enzymes showed high specific activity toward chloroacetanilide herbicides, acetochlor, alachlor and metolachlor. The tau class GST enzymes displayed remarkable activity toward the diphenylether herbicide, fluorodifen. From these results, we conclude that the phi and the tau class GST enzymes show herbicide specificities and also they play an important role in the detoxification reaction of plant toward herbicides.  相似文献   

11.
The physiologic mechanisms that determine directionality of lateral migration are a subject of intense research. Galvanotropism in a direct current (DC) electric field represents a natural model of cell re-orientation toward the direction of future migration. Keratinocyte migration is regulated through both the nicotinic and muscarinic classes of acetylcholine (ACh) receptors. We sought to identify the signaling pathway mediating the cholinergic regulation of chemotaxis and galvanotropism. The pharmacologic and molecular modifiers of the Ras/Raf-1/MEK1/ERK signaling pathway altered both chemotaxis toward choline and galvanotropism toward the cathode in a similar way, indicating that the same signaling steps were involved. The galvanotropism was abrogated due to inhibition of ACh production by hemicholinium-3 and restored by exogenously added carbachol. The concentration gradients of ACh and choline toward the cathode in a DC field were established by high-performance liquid chromatographic measurements. This suggested that keratinocyte galvanotaxis is, in effect, chemotaxis toward the concentration gradient of ACh, which it creates in a DC field due to its highly positive charge. A time-course immunofluorescence study of the membrane redistribution of ACh receptors in keratinocytes exposed to a DC field revealed rapid relocation to and clustering at the leading edge of alpha7 nicotinic and M(1) muscarinic receptors. Their inactivation with selective antagonists or small interfering RNAs inhibited galvanotropism, which could be prevented by transfecting the cells with constitutively active MEK1. The end-point effect of the cooperative signaling downstream from alpha7 and M(1) through the MEK1/ERK was an up-regulated expression of alpha(2) and alpha(3) integrins, as judged from the results of real-time PCR and quantitative immunoblotting. Thus, alpha7 works together with M(1) to orient a keratinocyte toward direction of its future migration. Both alpha7 and M(1) apparently engage the Ras/Raf/MEK/ERK pathway to up-regulate expression of the "sedentary" integrins required for stabilization of the lamellipodium at the keratinocyte leading edge.  相似文献   

12.
In order to elucidate the protective role of glutathione S-transferases (GSTs) against oxidative stress, we have investigated the kinetic properties of the human alpha-class GSTs, hGSTA1-1 and hGSTA2-2, toward physiologically relevant hydroperoxides and have studied the role of these enzymes in glutathione (GSH)-dependent reduction of these hydroperoxides in human liver. We have cloned hGSTA1-1 and hGSTA2-2 from a human lung cDNA library and expressed both in Escherichia coli. Both isozymes had remarkably high peroxidase activity toward fatty acid hydroperoxides, phospholipid hydroperoxides, and cumene hydroperoxide. In general, the activity of hGSTA2-2 was higher than that of hGSTA1-1 toward these substrates. For example, the catalytic efficiency (kcat/Km) of hGSTA1-1 for phosphatidylcholine (PC) hydroperoxide and phosphatidylethanolamine (PE) hydroperoxide was found to be 181.3 and 199.6 s-1 mM-1, respectively, while the catalytic efficiency of hGSTA2-2 for PC-hydroperoxide and PE-hydroperoxide was 317.5 and 353 s-1 mM-1, respectively. Immunotitration studies with human liver extracts showed that the antibodies against human alpha-class GSTs immunoprecipitated about 55 and 75% of glutathione peroxidase (GPx) activity of human liver toward PC-hydroperoxide and cumene hydroperoxide, respectively. GPx activity was not immunoprecipitated by the same antibodies from human erythrocyte hemolysates. These results show that the alpha-class GSTs contribute a major portion of GPx activity toward lipid hydroperoxides in human liver. Our results also suggest that GSTs may be involved in the reduction of 5-hydroperoxyeicosatetraenoic acid, an important intermediate in the 5-lipoxygenase pathway.  相似文献   

13.
Sphingosine 1-phosphate (S1P), produced by two sphingosine kinase isoenzymes, denoted SphK1 and SphK2, is the ligand for a family of five specific G protein-coupled receptors that regulate cytoskeletal rearrangements and cell motility. Whereas many growth factors stimulate SphK1, much less is known of the regulation of SphK2. Here we report that epidermal growth factor (EGF) stimulated SphK2 in HEK 293 cells. This is the first example of an agonist-dependent regulation of SphK2. Chemotaxis of HEK 293 cells toward EGF was inhibited by N,N-dimethylsphingosine, a competitive inhibitor of both SphKs, implicating S1P generation in this process. Down-regulating expression of SphK1 in HEK 293 cells with a specific siRNA abrogated migration toward EGF, whereas decreasing SphK2 expression had no effect. EGF contributes to the invasiveness of human breast cancer cells, and EGF receptor expression is associated with poor prognosis. EGF also stimulated SphK2 in MDA-MB-453 breast cancer cells. Surprisingly, however, down-regulation of SphK2 in these cells completely eliminated migration toward EGF without affecting fibronectin-induced haptotaxis. Our results suggest that SphK2 plays an important role in migration of MDA-MB-453 cells toward EGF.  相似文献   

14.
The origins of human acetylcholinesterase (HuAChE) reactivity toward the lethal chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) and its stereoselectivity toward the P(S)-VX enantiomer (VX(S)) were investigated by examining the reactivity of HuAChE and its mutant derivatives toward purified enantiomers of VX and its noncharged isostere O-ethyl S-(3-isopropyl-4-methylpentyl) methylphosphonothioate (nc-VX) as well as echothiophate and its noncharged analogue. Reactivity of wild-type HuAChE toward VX(S) was 115-fold higher than that toward VX(R), with bimolecular rate constants of 1.4 x 10(8) and 1.2 x 10(6) min(-1) M(-1). HuAChE was also 12500-fold more reactive toward VX(S) than toward nc-VX(S). Substitution of the cation binding subsite residue Trp86 with alanine resulted in a 3 order of magnitude decrease in HuAChE reactivity toward both VX enantiomers, while this replacement had an only marginal effect on the reactivity toward the enantiomers of nc-VX and the noncharged echothiophate. These results attest to the critical role played by Trp86 in accommodating the charged moieties of both VX enantiomers. A marked decrease in stereoselectivity toward VX(S) was observed following replacements of Phe295 at the acyl pocket (F295A and F295A/F297A). Replacement of the peripheral anionic site (PAS) residue Asp74 with asparagine (D74N) practically abolished stereoselectivity toward VX(S) (130-fold decrease), while a substitution which retains the negative charge at position 74 (D74E) had no effect. The results from kinetic studies and molecular simulations suggest that the differential reactivity toward the VX enantiomers is mainly a result of a different interaction of the charged leaving group with Asp74.  相似文献   

15.
Haplodiploid species are naturally biased by their genetic structure toward the evolution of sterile worker castes, as shown by W. D. Hamilton (1964. J. Theoret. Biol., 7, 1–16, 17–52). Diploid species do not have this intrinsic genetic bias toward eusociality. Nonetheless, true sociality has evolved in the diploid ancestors of the modern termites, and varying degrees of quasisociality are not uncommon in diploid species, including mammals. A genetic bias toward investment in relatives rather than offspring can arise in a diploid species as a result of inbreeding. The consequences of several regular incestuous breeding systems are analyzed in detail. It is shown that, under certain conditions, there is a natural bias toward an alternation of inbred and outbred generations. As this alternation proceeds, the genetic bias toward eusociality rapidly approaches an asymptotic value of 4(1 + 2f0)/3(1 + 3f0), where f0 is the average coefficient of relationship for the outbreeding pairs. For f0 close to zero, the genetic bias toward eusociality is close to 1.33, which is even larger than the genetic bias of 1.25 in haplodiploid species. Under other conditions there may be repeated incestuous matings between successive outbreeding generations. In this case the bias toward eusociality can be as large as 2.  相似文献   

16.
Cancer-associated retinopathy (CAR) is an ocular manifestation of a paraneoplastic syndrome whereby immunological reactions toward recoverin (Rec), a retina-specific Ca(2+) binding protein, and its aberrant expression in tumor cells lead to the retinal degeneration. To elucidate functional roles of the aberrantly expression in cancer cells, we performed immunoprecipitation using anti-human Rec mAb. We observed co-precipitation of G-protein-coupled receptor kinases (GRKs) and caveolin-1 with Rec from cell lysates of 293 or SSTW cells. Immunocytochemistry revealed that immunoreactivities toward Rec within the cancer cells were almost identical to those toward GRKs and caveolin-1. The present data strongly suggest that aberrantly expressed Rec should be involved in the GRK-dependent cellular regulation in cancer cells.  相似文献   

17.
18.
19.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

20.
We synthesized various 6-fluoro-7-(1-piperazino)quinazolines based on the structure of 1 and evaluated their inhibitory activities toward both TNF-alpha production and T cell proliferation responses. Among these compounds, 7a, having the 3,4-(methylenedioxy)phenyl moiety at the C(4)-position of the quinazoline ring, showed both inhibitory activities. Furthermore, the oral treatment with 7a exhibited an anti-inflammatory effect in rats with adjuvant arthritis as well as an inhibitory activity toward LPS-induced TNF-alpha production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号