首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical and kinetic properties under identical substrate and reaction conditions were obtained for an ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase in synaptosome membrane vesicles prepared from the brain of the moth, Mamestra configurata. Both the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase had single, high-affinity binding sites for ATP (Km = 14 and 116 μM, respectively), Ca2+free (Km = 0.13 nM and 0.072 nM, respectively), and Mg2+ (Km = 1.1 mM and 0.07 mM, respectively). Both systems were relatively little affected by K+ and were insensitive to ouabain, an inhibitor of (Na+ + K+)-ATPase. The results indicate that the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase are functionally coupled in synaptic membranes and constitute a mechanism for Ca2+ transport in the brain of M. configurata. Although moth brain (Ca2+ + Mg2+)-ATPase is maximally active at nanomolar concentrations of free calcium ion, the enzyme retains at least one-half of its maximal activity at micromolar calcium concentrations, indicating either that the enzyme has two binding sites for calcium (a high-affinity site at nanomolar Ca2+free and a low-affinity site at micromolar Ca2+free), or that there are two enzymes with high and low affinity for calcium, respectively. Calcium extrusion from brain neurones of M. configurata may operate in a two-stage, concentration-dependent process in which a first stage, low-affinity pump reduces intraneuronal calcium to a concentration at which a second stage, high-affinity pump becomes activated.  相似文献   

2.
Calcium uptake by washed boar sperm suspensions is markedly stimulated by the calmodulin antagonists trifluoperazine and calmidazolium. Both 45Ca2+ uptake and net Ca2+ uptake are increased by these drugs. Drug stimulated Ca2+ uptake is blocked by verapamil (1 mM), by ruthenium red (25 μM) and by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. Calmodulin antagonists do not slow ATP-dependent Ca2+ extrusion from plasma membrane vesicles, and they do not inhibit plasma membrane Ca2+-ATPase. It is proposed that calmodulin is involved in the control of Ca2+ entry in boar spermatozoa. Most entering Ca2+ in uncapacitated spermatozoa is sequestered by mitochondria or rapidly extruded by plasma membrane pumps. In contrast to the uptake mechanism, ATP-dependent Ca2+ extrusion does not appear to be regulated by calmodulin.  相似文献   

3.
Effects of endotoxin administration on the ATP-dependent Ca2+ uptake by canine cardiac sarcoplasmic reticulum (SR) were investigated. Results obtained 4 h after endotoxin administration show that ATP-dependent Ca2+ uptake by cardiac SR was decreased by 27–43% (p < 0.05). Kinetic analysis indicates that the Vmax values for Ca2+ and for ATP were significantly decreased while the S0.5 and the Hill coefficient values were not affected during endotoxin shock. Magnesium (1–5 mM) stimulated while vanadate (25–50 M) inhibited the ATP-dependent Ca2+ uptake, but the Mg2+-stimulated and the vanadate-inhibited activities remained significantly lower in the endotoxin-treated animals. Phosphorylation of SR by the exogenously added catalytic subunit of the cAMP-dependent protein kinase or by the addition of calmodulin stimulated the ATP-dependent Ca2+ uptake activities both in the control and endotoxin-injected dogs. However, the phosphorylation-stimulated activities remained significantly lower in the endotoxin-injected dogs. Dephosphorylation of SR decreased the ATP-dependent Ca2+ uptake, but the half-time required for the maximal dephosphorylation was reduced by 31% (p < 0.05) 4 h post-endotoxin. These data indicate that endotoxin administration impairs the ATP-dependent Ca2+ uptake in canine cardiac SR and the endotoxininduced impairment in the SR calcium transport is associated with a mechanism involving a defective phosphorylation and an accelerated dephosphorylation of SR membrane protein. Since ATP-dependent Ca2+ uptake by cardiac SR plays an important role in the regulation of the homeostatic levels of the contractile calcium, our findings may provide a biochemical explanation for myocardial dysfunction that occurs during endotoxin shock.  相似文献   

4.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   

5.
(Mg2+ + Ca2+)-ATPase activity has been found to be significantly reduced in EDTA-washed erythrocyte membrane preparations from cystic fibrosis patients compared to aged-matched controls. Calmodulin was found to be present in erythrocytes from cystic fibrosis patients and characterized similarly to calmodulin isolated from control preparations. Calmodulin from control erythrocyte preparations stimulated the (Mg2+ + Ca2+)-ATPase activity of EDTA-washed erythrocyte membranes derived from cystic fibrosis patients to the same extent as those membranes derived from controls. Similarly, calmodulin obtained from erythrocytes of cystic fibrosis patients stimulated the (Mg2+ + Ca2+)-ATPase activity of control and cystic fibrosis erythrocyte membrane preparations to a similar extent. These results indicate that this decrease in (Mg2+ + Ca2+)-ATPase activity in erythrocytes from cystic fibrosis patients is not due to an alteration in the regulatory function of calmodulin.  相似文献   

6.
Kasai M  Muto S 《Plant physiology》1991,96(2):565-570
The Ca2+ transport system of corn (Zea mays) leaf plasma membrane is composed of Ca2+ pump and Ca2+/H+ antiporter driven by H+ gradient imposed by a H+ pump (M Kasai, S Muto [1990] J Membr Biol 114: 133-142). It is necessary for characterization of these Ca2+ transporters to establish the procedure for their solubilization, isolation, and reconstitution into liposomes. We attempted to solubilize and reconstitute the Ca2+ pump in the present study. A nonionic detergent octaethyleneglycol monododecyl ether (C12E8) was the most effective detergent for a series of extraction and functional reconstitution of the Ca2+ pump among seven detergents examined. This was judged from activities of ATP-dependent 45Ca2+ uptake into liposomes reconstituted with the respective detergent-extract of the plasma membrane by the detergent dilution method. C12E8-extract of the plasma membrane was subjected to high performance liquid chromatography using a DEAE anion exchange column. Ca2+-ATPase was separated from VO43−-sensitive Mg2+-ATPase. These ATPases were separately reconstituted into liposomes, and their ATP-dependent Ca2+ uptake was measured. The liposomes reconstituted with the Ca2+-ATPase, but not with the VO43−-sensitive Mg2+-ATPase, showed ATP-dependent Ca2+ uptake. Nigericin-induced pH gradient (acid inside) caused only a little Ca2+ uptake into liposomes reconstituted with the Ca2+-ATPase, suggesting that the Ca2+/H+ antiporter was not present in the preparation. These results indicate that the Ca2+-ATPase actually functions as Ca2+ pump in the corn leaf plasma membrane.  相似文献   

7.
This study investigates the effect of magnesium (Mg2+) on the secretory responses and the mobilization of calcium (Ca2+) and Mg2+ evoked by cholecystokinin-octapeptide (CCK-8) in the exocrine rat pancreas. In the isolated intact perfused pancreas CCK-8 (10–10 M) produced marked increases in juice flow and total protein output in zero and normal (1.1 mM) extracellular Mg2+ [Mg2+]o compared to a much reduced secretory response in elevated (5 mM and 10 mM) [Mg2+]o Similar effects of perturbation of [Mg2+]o on amylase secretion and 45Ca2+ uptake (influx) were obtained in isolated pancreatic segments. In pancreatic acinar cells loaded with the fluorescent bioprobe fura-2 acetomethylester (AM), CCK-8 evoked marked increases in cytosolic free Ca2+ concentration [Ca2+]i in zero and normal [Mg2+]o compared to a much reduced response in elevated [Mg2+]o Pretreatment of acinar cells with either dibutyryl cyclic AMP (DB2 cAMP) or forskolin had no effect on the CCK-8 induced changes in [Ca2+]i. In magfura-2-loaded acinar cells CCK-8 (10–8 M) stimulated an initial transient rise in intracellular free Mg2+ concentration [Mg2+]i followed by a more prolonged and sustained decrease. This response was abolished when sodium Na+ was replaced with N-methyl-D-glucamine (NMDG). Incubation of acinar cells with 10 mM Mg2+ resulted in an elevation in [Mg2+]i. Upon stimulation with CCK-8, [Mg2+]i. decreased only slightly compared with the response obtained in normal [Mg2+]o. CCK-8 caused a net efflux of Mg2+ in pancreatic segments; this effect was abolished when extracellular sodium [Na+]o was replaced with either NMDG or choline. The results indicate that Mg2+ can regulate CCK-8-evoked secretory responses in the exocrine pancreas possibly via Ca2+ mobilization. Moreover, the movement of Mg2+ in pancreatic acinar cells is dependent upon extracellular Na+.  相似文献   

8.
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

9.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

10.
A subcellular fraction enriched in plasma membranes was obtained from gypsy moth (Lymantria dispar) larval midgut tissue. Using [45Ca]2+ as a tracer, Ca2+ transport activity by membrane vesicles in the enriched fraction was measured and shown to be ATP-dependent, with a very high affinity for Ca2+ (apparent Km for [Ca2+ free]
  • 1 Abbreviations used: [Ca2+free] = concentration of free (unbound) calcium ion;CaM = calmodulin; F = fraction; IOV = inside-out membrane vesicles; W-5 = N-(6-aminohexyl)-1-naphthalenesulfonamide; W-7 = N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide.
  • = 22 nM). Ca2+ transport was abolished upon addition of the calcium ionophore, A23187. Ca2+-stimulated, Mg2+-dependent ATPase activity peaked between 100 and 200 nM Ca2+free. Ca2+-Mg2+-ATPase activity was inhibited by vanadate, 2 phenothiazine drugs (trifluoperazine and chlorpromazine), and the naphthalene sulfonamide, W-7; the related compound, W-5, and ouabain had a negligible effect. These results suggest the presence of a high affinity plasma membrane Ca2+ pump in gypsy moth larval midgut cells and are discussed in light of earlier work involving calcium transport in isolated midguts of larval Hyalophora cecropia. Ionic and other conditions that characterize the midgut physiology of larval Lepidoptera (e.g., luminal pH; electrochemical gradient for Ca2+; effect of certain ions and inhibitors on Ca2+ transport) contrast significantly with those found in adult Diptera. The implications that these differences may have for calcium regulation are discussed. © 1992 Wiley-Liss, Inc.  相似文献   

    11.
    Sealed plasma membrane vesicles were obtained in high purity from leaves of Commelina communis L. by aqueous two-phase partitioning. Based on the analysis of a range of markers, the preparations (U3+U3′ phases) were shown to be devoid of tonoplast, Golgi and thylakoid membranes, and showed only trace mitochondrial contamination. One-third of the vesicles were oriented inside out and exhibited ATP-driven 45Ca2+ transport [? 15 pkat (mg protein)−1]. Ca2+ uptake into the vesicles had a pH optimum of 7.2 and apparent Km values for Ca2+ of 4.4 μM and for Mg-ATP of 300 μM. Ca2+ uptake, K+, Mg2+-ATPase (EC 3.6.1.3) activity as well as glucan synthase II (EC 2.4.1.34) activity were all maximal at the same equilibrium density (1.17 g cm−3) on continuous sucrose density gradients. The protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) did not inhibit the ATP-dependent Ca2+ transport into the vesicles, excluding a Ca2+/H+ exchange driven by a proton gradient. ATP-dependent Ca2+ uptake was inhibited by erythrosin B (I50= 0.1 μM), ruthenium red (I50= 30 μM), La3+ (I50= 10 μM) and vanadate (I50= 500 μM), but not by azide, cyanide and oligomycin. The calmodulin antagonists, trifluoperazine (I50= 70 μM) and W-7 (I50= 100 μM) were also inhibitory, However, this inhibition was not overcome by calmodulin. Trifluoperazine and W-7, on the other hand, stimulated Ca2+ efflux from the vesicles rather than inhibit Ca2+ uptake. Our results demonstrate the presence of a Ca2+-ATPase in the plasma membrane of C. communis. In the intact cell, the enzyme would pump Ca2+ out of the cell. Its high affinity for Ca2+ makes it a likely component involved in adjusting low cytoplasmic Ca2+ levels. No indications for a secondary active Ca2+/H+ transport mechanism in the plasma membrane of C. communis were obtained. Both, the nucleotide specificity and the sensitivity towards vanadate. distinguish the Ca2+-ATPase from the H+-translocating K+. Mg2+-ATPase in C. communis plasma membranes.  相似文献   

    12.
    Cardiac mitochondrial matrix (m) free Ca2+ ([Ca2+]m) increases primarily by Ca2+ uptake through the Ca2+ uniporter (CU). Ca2+ uptake via the CU is attenuated by extra-matrix (e) Mg2+ ([Mg2+]e). How [Ca2+]m is dynamically modulated by interacting physiological levels of [Ca2+]e and [Mg2+]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg2+]e modulates Ca2+ uptake via the CU, it also alters bioenergetics in a matrix Ca2+–induced and matrix Ca2+–independent manner. To test this, we measured changes in [Ca2+]e, [Ca2+]m, [Mg2+]e and [Mg2+]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0–0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0–2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that >0.125 mM MgCl2 significantly attenuated CU-mediated Ca2+ uptake and [Ca2+]m. Incremental [Mg2+]e did not reduce initial Ca2+uptake but attenuated the subsequent slower Ca2+ uptake, so that [Ca2+]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca2+]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca2+]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg2+]m but it altered bioenergetics by its direct effect to decrease Ca2+ uptake. However, at a given [Ca2+]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg2+]e. Thus, [Mg2+]e without a change in [Mg2+]m can modulate bioenergetics independently of CU-mediated Ca2+ transport.  相似文献   

    13.
    The Mg2+-dependency of Ca2+-induced ATP hydrolysis is studied in basolateral plasma membrane vesicles from rat kidney cortex in the presence of CDTA and EGTA as Mg2+- and Ca2+-buffering ligands. ATP hydrolysis is strongly stimulated by Mg2+ with a Km of 13 μ M in the absence or presence of 1 μ M free Ca2+. At free Mg2+ concentrations of 1 μ M and lower, ATP hydrolysis is Mg2+ -independent, but is strongly stimulated by submicromolar Ca2+ concentrations Km  0.25 μM, Vmax  24 μmol Pi/h per mg protein). The Ca2+-stimulated ATP hydrolysis strongly decreases at higher Mg2+ concentrations. The Ca2+-stimulated Mg2+-independent ATP hydrolysis is not affected by calmodulin or trifluoperazine and shows no specificity for ATP over ADP, ITP and GTP. In contrast, at high Mg2+ concentrations calmodulin and trifluoperazine affect the high affinity Ca2+-ATPase activity significantly and ATP is the preferred substrate. Control studies on ATP-dependent Ca2+-pumping in renal basolaterals and on Ca2+-ATPase in erythrocyte ghosts suggest that the Ca2+-pumping enzyme requires Mg2+. In contrast, a role of the Ca2+-stimulated Mg2+-independent ATP hydrolysis in active Ca2+ transport across basolateral membranes is rather unlikely.  相似文献   

    14.
    (Mg2+ + Ca2+)-ATPase activity has been found to be significantly reduced in EDTA-washed erythrocyte membrane preparations from cystic fibrosis patients compared to aged-matched controls. Calmodulin was found to be present in erythrocytes from cystic fibrosis patients and characterized similarly to calmodulin isolated from control preparations. Calmodulin from control erythrocyte preparations stimulated the (Mg2+ + Ca2+)-ATPase activity of EDTA-washed erythrocyte membranes derived from cystic fibrosis patients to the same extent as those membranes derived from controls. Similarly, calmodulin obtained from erythrocytes of cystic fibrosis patients stimulated the (Mg2+ + Ca2+)-ATPase activity of control and cystic fibrosis erythrocyte membrane preparations to a similar extent. These results indicate that this decrease in (Mg2+ + Ca2+)-ATPase activity in erythrocytes from cystic fibrosis patients is not due to an alteration in the regulatory function of calmodulin.  相似文献   

    15.
    The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

    16.
    ATP-dependent oxalate facilitated calcium transport in sarcoplasmic reticulum (SR) preparations obtained from rabbit vastus lateralis muscle (fast skeletal muscle; Fsr) and soleus (slow skeletal muscle; Ssr) was determined. Addition of exogenous calmodulin did not stimulate calcium transport in either Fsr or Ssr preparations. Fsr and Ssr previously washed in 1 mM EGTA demonstrated a reduced capacity to transport Ca2+; the exogenous addition of calmodulin (0.24 μM) under these conditions, did not restore uptake activity but significantly decreased the steady-state level of Ca2+ uptake. Extracts of skeletal SR prepared by treatment with 0.2 mM EDTA and boiling produced significantly more stimulation of red cell Ca2+ATPase activity than extracts prepared by boiling alone. This stimulation of red cell Ca2+-ATPase was inhibited to a significant extent by 4880, a known anti-calmodulin agent. Radioimmunoassay revealed that extracts prepared by boiling or EDTA-treatment followed by boiling contained considerable amounts of calmodulin. Washing with 1 mM EGTA, though, did not release any calmodulin from SR. These studies reveal that calmodulin is present in both Fsr and Ssr and can only be removed by harsh treatments. The role of calmodulin in skeletal muscle Ca2+-transport remains to be determined.  相似文献   

    17.
    (1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

    18.
    This study investigated the effects of extracellular Mg2+ ([Mg2+]o) on basal and acetylcholine (ACh)-evoked amylase secretion and intracellular free Ca2+ ([Ca2+]i) in rat parotid acinar cells. In a medium containing 1.1 mM [Mg2+]o, ACh evoked significant increases in amylase secretion and [Ca2+]i. Either low (0 mM) or elevated (5 and 10 mM) [Mg2+]o attenuated ACh-evoked responses. In a nominally Ca2+ free medium, elevated [Mg2+]o attenuated basal and ACh-evoked amylase secretion and [Ca2+]i. In parotid acinar cells incubated with either 0, 1.1, 5 or 10 mM [Mg2+]o, ACh evoked a gradual decrease in [Mg2+]i. These results indicate that the ACh-evoked Mg2+ efflux is an active process since Mg2+ has to move against its gradient. Either lidocaine, amiloride, N-methyl-d-glucamine, quinidine, dinitrophenol or bumetanide can elevate [Mg2+]i above basal level. In the presence of these membrane transport inhibitors, ACh still evoked a decrease in [Mg2+]i but the response was less pronounced with either [Na+]o removal or in the presence of either amiloride or quinidine. These results indicate marked interactions between Ca2+ and Mg2+ signalling in parotid acinar cells and that ACh-evoked Mg2+ transport was not dependent upon [Na+]o.  相似文献   

    19.
    Demonstration of a high affinity Ca2+ ATPase in rat liver plasma membranes   总被引:4,自引:0,他引:4  
    Rat liver plasma membranes contained a high affinity Ca2+-ATPase which had an apparent half saturation constant of 0.2 μM for calcium. The Ca2+-ATPase was not stimulated by adding magnesium and/or calmodulin. Conversely, the addition of these substances diminished the calcium-stimulation of the ATPase. Orthovanadate (7 nM-2 mM), mitochondrial ATPase blockers (NaN3, KCN, dicyclohexylcarbodiimide), Na+, K+ and ouabain had no effect on the ATPase activity. The ATPase was separated from nonspecific divalent cation stimulatable ATPase (Mg2+-ATPase) by solubilization with Triton X-100 followed by a Sephadex G-200 column chromatography and showed an apparent molecular weight of 200,000.  相似文献   

    20.
    Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号