首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid   总被引:1,自引:0,他引:1  
We isolated two nitrilase genes, ZmNIT1 and ZmNIT2, from maize (Zea mays) that share 75% sequence identity on the amino acid level. Despite the relatively high homology to Arabidopsis NIT4, ZmNIT2 shows no activity toward beta-cyano-alanine, the substrate of Arabidopsis NIT4, but instead hydrolyzes indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). ZmNIT2 converts IAN to IAA at least seven to 20 times more efficiently than AtNIT1/2/3. Quantitative real-time polymerase chain reaction revealed the gene expression of both nitrilases in maize kernels where high concentrations of IAA are synthesized tryptophan dependently. Nitrilase protein and endogenous nitrilase activity are present in maize kernels together with the substrate IAN. These results suggest a role for ZmNIT2 in auxin biosynthesis.  相似文献   

2.
Nitrilase enzymes catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have been identified in plants, bacteria and fungi. There is mounting evidence to support a role for nitrilases in plant–microbe interactions, but the activity of these enzymes in plant pathogenic bacteria remains unexplored. The genomes of the plant pathogenic bacteria Pseudomonas syringae pv. syringae B728a and Pseudomonas syringae pv. tomato DC3000 contain nitrilase genes with high similarity to characterized bacterial arylacetonitrilases. In this study, we show that the nitrilase of P. syringae pv. syringae B728a is an arylacetonitrilase, which is capable of hydrolysing indole-3-acetonitrile to the plant hormone indole-3-acetic acid, and allows P. syringae pv. syringae B728a to use indole-3-acetonitrile as a nitrogen source. This enzyme may represent an additional mechanism for indole-3-acetic acid biosynthesis by P. syringae pv. syringae B728a, or may be used to degrade and assimilate aldoximes and nitriles produced during plant secondary metabolism. Nitrilase activity was not detected in P. syringae pv. tomato DC3000, despite the presence of a homologous nitrilase gene. This raises the interesting question of why nitrilase activity has been retained in P. syringae pv. syringae B728a and not in P. syringae pv. tomato DC3000.  相似文献   

3.
腈水解酶基因bxn的结构与功能研究   总被引:2,自引:0,他引:2  
前期研究发现腈水解酶基因bxnRD127表达产物无功能,测序证明该基因结构中存在4处突变。本文对4处突变逐点进行结构与功能回复突变研究,发现其中2处突变能使基因表达产物丧失功能,1处使基因表达产物活性降低,1处对基因表达产物活性基本无影响。进一步将完全回复突变的bxn基因转化烟草,获得的转基因烟草具有抗溴苯腈除草剂特性,结果证明结构中的3处突变与活性中心功能有关。  相似文献   

4.
Indole-3-acetic acid (IAA) is produced commonly by plants and many bacteria, however, little is known about the genetic basis involving the key enzymes of IAA biosynthetic pathways from Bacillus spp. IAA intermediates from the Gram-positive spore-forming bacterium Paenibacillus polymyxa E681 were investigated, which showed the existence of only an indole-3-pyruvic acid (IPA) pathway for IAA biosynthesis from the bacterium. Four open reading frames (ORFs) encoding indole-3-pyruvate decarboxylaselike proteins and putative indole-3-pyruvate decarboxylase (IPDC), a key enzyme in the IPA synthetic pathway, were found on the genome sequence database of P. polymyxa and cloned in Escherichia coli DH5alpha. One of the ORFs, PP2_01257, was assigned as probable indole-3-pyruvate decarboxylase. The ORF consisted of 1,743 nucleotides encoding 581 amino acids with a deduced molecular mass of 63,380 Da. Alignment studies of the deduced amino acid sequence of the ORF with known IPDC sequences revealed conservation of several amino acids in PP2_01257, essential for substrate and cofactor binding. Recombinant protein, gene product of the ORF PP2_01257 from P. polymyxa E681, was expressed in E. coli BL21 (DE3) as a glutathione S-transferase (GST)-fusion protein and purified to homogeneity using affinity chromatography. The molecular mass of the purified enzyme showed about 63 kDa, corresponding closely to the expected molecular mass of IPDC. The indole-3-pyruvate decarboxylase activity of the recombinant protein, detected by HPLC, using IPA substrate in the enzyme reaction confirmed the identity and functionality of the enzyme IPDC from the E681 strain.  相似文献   

5.
A Klebsiella ozaenae nitrilase which converts the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to 3,5-dibromo-4-hydroxybenzoic acid has been expressed at 5-10% of the total protein in Escherichia coli from a cloned K. ozaenae DNA segment and purified 10.3-fold to homogeneity. The purified polypeptide is molecular weight 37,000 in size, but the active form of the enzyme is composed of two identical subunits. The purified enzyme exhibits a pH optimum of 9.2 and a temperature optimum of 35 degrees C. The purified enzyme is also quite sensitive to thiol-specific reagents. The nitrilase is highly specific for bromoxynil as substrate with a Km of 0.31 mM and Vmax of 15 mumol of NH3 released/min/mg protein. Analysis of bromoxynil-related substrates indicates the enzyme exhibits preference for compounds containing two meta-positioned halogen atoms. Nucleotide sequence analysis of a 1,212-base pair PstI-HincII DNA segment containing the locus (bxn) encoding the bromoxynil-specific nitrilase reveals a single open reading frame encoding a polypeptide 349 amino acids in length. The predicted sequence of the purified enzyme was derived from the nucleotide sequence of the bxn gene.  相似文献   

6.
A 34,000-Da protein (P34) is one of the four major soybean oil body proteins observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of isolated organic solvent-extracted oil bodies from mature seeds. P34 is processed during seedling growth to a 32,000-Da polypeptide (P32) by the removal of an amino-terminal decapeptide (Herman, E.M., Melroy, D.L., and Buckhout, T.J. (1990) Plant Physiol, in press). A soybean lambda ZAP II cDNA library constructed from RNA isolated from midmaturation seeds was screened with monoclonal antibodies directed against two different epitopes of P34. The isolated cDNA clone encoding P34 contains 1,350 base pairs terminating in a poly(A)+ tail and an open reading frame 1,137 base pairs in length. The open reading frame includes a deduced amino acid sequence which matches 23 of 25 amino-terminal amino acids determined by automated Edman degradation of P34 and P32. The cDNA predicts a mature protein of 257 amino acids and of 28,641 Da. The open reading frame extends 5' from the known amino terminus of P34 encoding a possible precursor and signal sequence segments with a combined additional 122 amino acids. Prepro-P34 is deduced to be a polypeptide of 42,714 Da, indicating that the cDNA clone apparently encodes a polypeptide of 379 amino acids. A comparison of the nucleotide and deduced amino acid sequences in the GenBank Data Bank with the sequence of P34 has shown considerable sequence similarity to the thiol proteases of the papain family. Southern blot analysis of genomic DNA indicated that the P34 gene has a low copy number.  相似文献   

7.
Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
An HPLC/GC-MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography-tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20-30 pmol g(-1) fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover.  相似文献   

8.
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against L-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.  相似文献   

9.
10.
In plants, O-methyltransferases (OMTs) play an important role in methylation of secondary metabolites, especially flavonoids and other phenylpropanoids, and two cDNA clones, IhOMT1 and IhOMT2 (Iris hollandica OMT), encoding OMTs were successfully isolated from a cDNA library of flower buds of I. hollandica. IhOMT1 encodes an open reading frame (ORF) of 365 amino acids with calculated molecular mass of 40,193Da and isoelectric point (pI) of 5.54, while IhOMT2, which shares 31.5% amino acid sequence identity with IhOMT1, encodes 369 amino acids with calculated molecular mass of 40,385Da and pI of 5.50. In addition, the molecular masses of both recombinant IhOMT1 and IhOMT2 proteins were estimated to be about 40kDa by protein gel blot analysis. Characterization of the enzymatic properties using the recombinant IhOMT1 protein confirmed that IhOMT1 cDNA encodes a S-adenosyl-l-methionine (SAM)-dependent caffeic acid 3-OMT, which catalyzes the transfer of the methyl moiety from SAM to caffeic acid to form ferulic acid. Its optimum activity was observed at pH 7.5-8.0 and at 35 degrees C. This is the first report of the isolation and characterization of a COMT cDNA clone involved in the phenylpropanoid biosynthesis of Iridaceae plants. In contrast, IhOMT2 showed no activity in SAM-dependent assays for various phenylpropanoids.  相似文献   

11.
1- O -(indole-3-acetyl)- β - d -glucose: myo -inositol indoleacetyl transferase (IA- myo -inositol synthase) is an important enzyme in IAA metabolism. This enzyme catalyses the transfer of the indole acetyl (IA) moiety from 1- O -(indole-3-acetyl)- β - d -glucose to myo -inositol to form IA- myo- inositol and glucose. IA- myo -inositol synthase was purified to an electrophoretically homogenous state from maize liquid endosperm by fractionation with ammonium sulphate, anion-exchange, adsorption on hydroxylapatite, affinity chromatography on ConA-Sepharose, preparative PAGE and isoelectric focusing. We thus obtained two enzyme preparations which differ in their R f on 8% polyacrylamide gel. The preparation of R f 0.36 contained a single 56.4 kDa polypeptide, whereas the preparation of R f 0.39 consisted of two polypeptides of 56.4 and 53.5 kDa. Both purified preparations of IAInos synthase also exhibited the activity of an IAInos hydrolase, showing that the dual activity was associated with a single protein. Results of gel filtration and analytical SDS-PAGE suggest that the native enzyme exists as both a monomeric (65 kDa) and homo- or heterodimeric form (110–130 kDa). Analysis of peptide maps and amino acid sequences of two 21 amino-acid peptides showed that polypeptides of 56.4 and 53.5 kDa have the same primary structure and that the 3 kDa difference in molecular mass is probably caused by different glycosylation levels. Comparison of this partial and internal amino acid sequence with sequences of other plant acyltransferases indicated similarity to several proteins which belonged to the serine carboxypeptidase-like (SCPL) acyltransferase family.  相似文献   

12.
Peptides obtained by cleavage of a Rhodococcus rhodochrous K22 nitrilase, which acts on aliphatic nitriles such as acrylonitrile, crotonitrile, and glutaronitrile, have been sequenced. The data allowed the design of oligonucleotide probes which were used to clone a nitrilase encoding gene. Plasmid pNK21, in which 2.05-kb sequence covering the region encoding the nitrilase was was placed under the control of the lac promoter, directed overproduction of enzymatically active nitrilase in response to addition of isopropyl beta-D-thiogalactopyranoside in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell extract showed that the amount of nitrilase was about 40% of the total soluble proteins, leading to the establishment of a simple purification of the nitrilase. The nucleotide sequence of the nitrilase gene predicts a protein composed of 383 amino acids (M(r) = 42,275), including only one cysteine. The amino acid sequence homology between the Rhodococcus nitrilase and the Klebsiella ozaenae bromoxynil nitrilase [Stalker et al. (1988) J. Biol. Chem. 263, 6310-6314] was 38.3%, and a unique cysteinyl residue (Cys-170) in the former nitrilase was conserved at the corresponding position in the latter nitrilase. Cys-170 of the Rhodococcus nitrilase was replaced by Ala or Ser by site-directed mutagenesis. Both mutations resulted in the complete loss of nitrilase activity, clearly indicating that this cysteinyl residue is essential for the catalytic activity.  相似文献   

13.
To clarify the roles of auxin-binding proteins (ABPs) in the action of auxin, soluble auxin-binding proteins were isolated from an extract of etiolated mung bean hypocotyls by affinity chromatography on 2,4-dichlorophenoxyacetic acid (2,4-D)-linked Sepharose 4B. A 39-kDa polypeptide was retained on the affinity column and eluted with a solution containing IAA or 2,4-D, but not with a solution containing benzoic acid. The protein was then purified by several column-chromatographic steps. The apparent molecular mass of the protein was estimated to be 77 kDa by gel filtration and 39 kDa by SDS-PAGE. We designated this protein ABP39. The partial amino acid sequences of ABP39, obtained after chemical cleavage by CNBr, revealed high homology with alcohol dehydrogenase (ADH; EC 1.2.1.1). While the ABP39 was not capable of oxidizing ethanol, it did catalyze the reduction of indole-3-acetaldehyde (IAAld) to indole-3-ethanol (IEt) with an apparent Km of 22 μ M. The IAAld reductase (EC 1.2.3.1) is specific for NADPH as a cofactor. The ABP39 also catalyzed the reduction of other aldehydes, such as acetaldehyde, benzaldehyde, phenylacetaldehyde and propionealdehyde. Indole-3-aldehyde was a poor substrate. The enzyme activity was inhibited by both indole-3-acetic acid and 2,4-D in a competitive manner. Therefore, the enzyme is considered to be retained on the affinity column by recognition of auxin structure.  相似文献   

14.
Existence of two gamma subunits of the G proteins in brain   总被引:15,自引:0,他引:15  
Although amino acid sequences have been determined for the alpha and beta subunits of Gs, Gi, and Go, sequences have not been reported for the gamma subunits of these G proteins. In the present paper, we determined the sequences of peptides prepared by partial proteolysis of two different forms of the gamma subunit of Gs, Gi, and Go from bovine brain. Using oligonucleotide probes based on the sequences of two of these peptides, a cDNA clone was isolated from a bovine adrenal cDNA library. This clone contained a 0.9-kilobase cDNA insert that included an open reading frame of 213 bases encoding a 71-amino acid polypeptide with an estimated Mr of 7850. The amino acid sequence predicted for the adrenal cDNA clone was identical to that determined for one form of the gamma subunit from brain. In addition, an antibody to a peptide based on the predicted amino acid sequence of this cDNA clone reacted specifically with one of the brain gamma subunits, indicating the adrenal cDNA clone encodes a gamma subunit present in both adrenal gland and brain. Also, evidence is presented, demonstrating the existence of a second, structurally distinct, form of the gamma subunit of Gs, Gi, and Go in brain.  相似文献   

15.
We isolated the ipdc gene coding for indole-3-pyruvic acid decarboxylase (IPDC), a key enzyme in the indole-3-pyruvic acid pathway for indole-3-acetic acid biosynthesis, in the plant growth-promoting rhizobacterium Azospirillum lipoferum FS. Gel mobility-shift assay showed the presence of two DNA-binding proteins that might be involved in regulation of the ipdc gene expression.  相似文献   

16.
1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a Fusarium eumartii infected-tuber cDNA library. The deduced amino acid sequence exhibited similarity to other ACC oxidase proteins from several plants species. Northern blot analysis revealed that the ST-ACO3 mRNA level increased in potato tubers upon inoculation with F. eumartii, as well as after treatment with salicylic acid and indole-3-acetic acid, suggesting a cross-talk between different signalling pathways involved in the defence response of potato tubers against F. eumartii attack.  相似文献   

17.
A cDNA clone encoding a 10.8 kDa photosystem I polypeptide of barley   总被引:2,自引:0,他引:2  
A cDNA clone encoding the barley photosystem I polypeptide which migrates with an apparent molecular mass of 16 kDa on SDS-polyacrylamide gels has been isolated. The 634 bp sequence of this clone has been determined and contains one large open reading frame coding for a 15,457 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10,821 Da. The amino acid sequence of the transit peptide indicates that the polypeptide is routed towards the stroma side of the thylakoid membrane. The hydropathy plot of the polypeptide shows no membrane-spanning regions.  相似文献   

18.
19.
A cDNA clone encoding L-galactono-gamma-lactone (GAL) dehydrogenase (EC 1.3.2.3) was isolated from tobacco leaves. The cDNA clone contained an open reading frame encoding the protein of 501 amino acids with a calculated molecular mass of 56,926 Da, preceded by a putative mitochondrial targeting signal consisting of 86 amino acid residues. In fact, GAL dehydrogenase was localized in the mitochondria of tobacco cells. The deduced amino acid sequence of the cDNA showed 77 and 82% homology to cauliflower and sweet potato GAL dehydrogenases, respectively. Southern blot analysis showed that tobacco contains one copy of the gene for the enzyme. Northern blot analysis showed that GAL dehydrogenase mRNA (2.0 kb) is expressed in the leaves, stems, and roots in almost equal quantities. We introduced the cDNA clone encoding tobacco GAL dehydrogenase into a pET expression vector to overexpress this protein in Escherichia coli. The partially purified recombinant enzyme was used for comparative studies on the native enzymes from tobacco and other sources; its enzymatic properties were similar to those of other GAL dehydrogenases.  相似文献   

20.
Mammalian surfactant is an incompletely defined mixture of lipids and associated proteins of molecular mass 35,000 Da and approximately 6,000 Da. Surfactant preparations which are highly effective in treating respiratory distress syndrome in premature infants lack the 35-kDa proteins, but contain the 6-kDa proteins. We isolated and partially sequenced one of these low molecular weight proteins from the lung lavage material of an alveolar proteinosis patient. Oligonucleotides deduced from the sequence were used as probes to isolate a human cDNA clone. The clone codes for a 42-kDa protein which contains the sequence of the 6-kDa protein. Messenger RNA coding for the 42-kDa protein was identified in human lung RNA by in vitro translation and immunoprecipitation of the translation products with an antiserum against purified bovine surfactant 6-kDa proteins. Immunoprecipitation of the 42-kDa primary translation product is inhibited by the presence of the bovine 6-kDa protein. These observations suggest a precursor-product relationship of the 42-kDa protein to one of the 6-kDa proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号