首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various theoretical concepts, such as free energy potentials, electrostatic interaction potentials, atomic packing, solvent-exposed surface, and surface charge distribution, were tested for their ability to discriminate between native proteins and misfolded protein models. Misfolded models were constructed by introducing incorrect side chains onto polypeptide backbones: side chains of the alpha-helical hemerythrin were modeled on the beta-sheeted backbone of immunoglobulin VL domain, whereas those of the VL domain were similarly modeled on the hemerythrin backbone. CONGEN, a conformational space sampling program, was used to construct the side chains, in contrast to the previous work, where incorrect side chains were modeled in all trans conformations. Capability of the conformational search procedure to reproduce native conformations was gauged first by rebuilding (the correct) side chains in hemerythrin and the VL domain: constructs with r.m.s. differences from the x-ray side chains 2.2-2.4 A were produced, and many calculated conformations matched the native ones quite well. Incorrectly folded models were then constructed by the same conformational protocol applied to incorrect amino acid sequences. All CONGEN constructs, both correctly and incorrectly folded, were characterized by exceptionally small molecular surfaces and low potential energies. Surface charge density, atomic packing, and Coulomb formula-based electrostatic interactions of the misfolded structures and the correctly folded proteins were similar, and therefore of little interest for diagnosing incorrect folds. The following criteria clearly favored the native structures over the misfolded ones: 1) solvent-exposed side-chain nonpolar surface, 2) number of buried ionizable groups, and 3) empirical free energy functions that incorporate solvent effects.  相似文献   

2.
A new functional representation of NMR-derived distance constraints, the flexible restraint potential, has been implemented in the program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168) for molecular structure generation. In addition, flat-bottomed restraint potentials for representing dihedral angle and vicinal scalar coupling constraints have been introduced into CONGEN. An effective simulated annealing (SA) protocol that combines both weight annealing and temperature annealing is described. Calculations have been performed using ideal simulated NMR constraints, in order to evaluate the use of restrained molecular dynamics (MD) with these target functions as implemented in CONGEN. In this benchmark study, internuclear distance, dihedral angle, and vicinal coupling constant constraints were calculated from the energy-minimized X-ray crystal structure of the 46-amino acid polypeptide crambin (ICRN). Three-dimensional structures of crambin that satisfy these simulated NMR constraints were generated using restrained MD and SA. Polypeptide structures with extended backbone and side-chain conformations were used as starting conformations. Dynamical annealing calculations using extended starting conformations and assignments of initial velocities taken randomly from a Maxwellian distribution were found to adequately sample the conformational space consistent with the constraints. These calculations also show that loosened internuclear constraints can allow molecules to overcome local minima in the search for a global minimum with respect to both the NMR-derived constraints and conformational energy. This protocol and the modified version of the CONGEN program described here are shown to be reliable and robust, and are applicable generally for protein structure determination by dynamical simulated annealing using NMR data.  相似文献   

3.
T Ishida  Y In  M Doi  M Inoue  Y Hamada  T Shioiri 《Biopolymers》1992,32(2):131-143
In order to investigate the conformational variation of ascidiacyclamide, a cytotoxic cyclic peptide from marine tunicate Ascidian, single crystals were prepared from ethanol and aqueous ethanol solutions as its free form (crystal I) and H2O/0.5 C2H5OH solvate (crystal II), respectively, and were determined by the x-ray diffraction method. Crystal I showed a pseudo C2-symmetric saddle-shaped rectangular conformation. Similar conformations were also observed in crystal II, where there were two crystallographically independent C2-symmetric molecules (named Mol-A and -B) per asymmetric unit. Mol-A and -B included H2O and H2O/C2H5OH solvents within their ring structures, respectively. These water and ethanol molecules were located on the crystallographic dyad axes, and were stabilized by the van der Waals contacts (including hydrogen bonds) with the polar-ring N atoms and nonpolar D-Val side-chain atoms. The conformational characteristics of ascidiacyclamide and its fluctuation/variation were discussed based on the present and previously reported x-ray results.  相似文献   

4.
Patterson search calculations using the three-dimensional structure of the alpha-amylase inhibitor from Streptomyces tendae obtained from experimental nuclear magnetic resonance (n.m.r.) data were performed to study the possibility of solving the phase problem in the X-ray diffraction method with protein structures determined by n.m.r. Using all heavy atoms (C, N, O, S) of the residues 5 to 73 in the best n.m.r. structure of the alpha-amylase inhibitor (520 out of the 558 heavy atoms in the complete polypeptide chain), the maximum of the rotation function corresponded to the correct solution obtained by the previous independent determination of the crystal structure. However, additional local maxima, which are not significantly lower than the global maximum, also showed up. Performing the Patterson search with a model containing the backbone atoms and the heavy atoms of only the interior side-chains (399 atoms), which are much better defined by the n.m.r. data, the correct maximum was significantly higher than all other maxima. A translation search for the best orientation of the latter model yielded the correct solution. The energy-restrained crystallographic refinement was performed with this model to an R-factor of 26%. This corresponds approximately to the R-factor calculated for the X-ray crystal structure previously determined using the isomorphous replacement technique, if the residues 1 to 4 and 74 and all localized solvent molecules were removed from this structure. During the refinement the root-mean-square deviation between the two structures decreased from 1.03 A to 0.26 A for the polypeptide backbone and from 1.64 A to 0.73 A for all heavy atoms. There are no major local conformational differences between the two structures, with the single exception of the side-chain of Gln52.  相似文献   

5.
ApoA-IV is an amphipathic protein that can emulsify lipids and has been linked to protective roles against cardiovascular disease and obesity. We previously reported an x-ray crystal structure of apoA-IV that was truncated at its N and C termini. Here, we have extended this work by demonstrating that self-associated states of apoA-IV are stable and can be structurally studied using small-angle x-ray scattering. Both the full-length monomeric and dimeric forms of apoA-IV were examined, with the dimer showing an elongated rod core with two nodes at opposing ends. The monomer is roughly half the length of the dimer with a single node. Small-angle x-ray scattering visualization of several deletion mutants revealed that removal of both termini can have substantial conformational effects throughout the molecule. Additionally, the F334A point mutation, which we previously showed increases apoA-IV lipid binding, also exhibited large conformational effects on the entire dimer. Merging this study''s low-resolution structural information with the crystal structure provides insight on the conformation of apoA-IV as a monomer and as a dimer and further defines that a clasp mechanism may control lipid binding and, ultimately, protein function.  相似文献   

6.
The allosteric transition of glycogen phosphorylase promoted by protein phosphorylation is accompanied by the association of a pair of functional dimers to form a tetramer. The conformational changes within the dimer that lead to the creation of a protein recognition surface have been analyzed from a comparison of the crystal structures of T-state dimeric phosphorylase b and R-state tetrameric phosphorylase a. Regions of the structure that participate in the tetramer interface are situated within structural subdomains. These include the glycogen storage subdomain, the C-terminal subdomain and the tower helix. The subdomains undergo concerted conformational transitions on conversion from the T to the R state (overall r.m.s. shifts between 1 and 1.7 A) and, together with the quaternary conformational change within the functional dimer, create the tetramer interface. The glycogen storage subdomain and the C-terminal subdomain are distinct from those regions that contribute to the dimer interface, but shifts in the subdomains are correlated with the allosteric transitions that are mediated by the dimer interface. The structural properties of the tetramer interface are atypical of an oligomeric protein interface and are more similar to protein recognition surfaces observed in protease inhibitors and antibody-protein antigen complexes. There is a preponderance of polar and charged residues at the tetramer interface and a high number of H-bonds per surface area (one H-bond per 130 A2). In addition, the surface area made inaccessible at the interface is relatively small (1,142 A2 per subunit on dimer to tetramer association compared with 2,217 A2 per subunit on monomer-to-dimer association).  相似文献   

7.
Summary NMR studies of symmetric multimers are problematic due to the difficulty in distinguishing between intra-, inter-, and co-monomer (mixed) NOE signals. Previously, one of us described a general calculation strategy called dynamic assignment by which this difficulty can be overcome [Nilges, M. (1993) Proteins, 17, 297–309]. Here we describe extensions to the method for handling many co-monomer NOEs and for taking advantege of prior knowledge of monomer structures. The new protocol was developed for the particularly difficult case of leucine zipper (LZ) homodimers, for which the previous protocol proved inefficient. In addition to the problem of dimer symmetry, LZs have a particularly high proportion of co-monomer NOE signals and a high degree of repetition in sequence and structure, leading to significant spectral overlap. Furthermore, the leucine zipper is a rather extended (as opposed to globular) protein domain; accurately determining such a structure based only on the very short distances obtainable by NMR is clearly a challenge to the NMR structure determination method. We have previously shown that, for LZ homodimers, many of the backbone-backbone NOESY cross peaks can be unambiguously assigned as intra-monomer, enabling approximate monomer structures to be calculated. Using model and experimental data sets, we verified that the new protocol converges to the correct dimer structure. The results show that short-range NMR distance data can be sufficient to define accurately the extended LZ. The protocol has been used to derive a novel solution structure of the c-Jun LZ domain. Based on these calculations, we propose the protocol as a prototype for the general case of symmetric multimers where the monomer structure is known.Abbreviations 3D three-dimensional - GCN4-c crystal structure of the GCN4 LZ homodimer - GCN4-s solution structures of GCN4 - GSYM global symmetry - Jun-m model structure of the Jun LZ homodimer - Jun-s solution structure of Jun - LZ leucine zipper - MFP mean force potential - MDSA molecular dynamical simulated annealing - NCS noncrystallographic symmetry - NOE nuclear Overhauser enhancement - rmsd root-mean-square deviation - vdW van der Waals  相似文献   

8.
A detailed understanding of the mechanisms by which particular amino acid sequences can give rise to more than one folded structure, such as for proteins that undergo large conformational changes or misfolding, is a long-standing objective of protein chemistry. Here, we describe the crystal structures of a single coiled-coil peptide in distinct parallel and antiparallel tetrameric configurations and further describe the parallel or antiparallel crystal structures of several related peptide sequences; the antiparallel tetrameric assemblies represent the first crystal structures of GCN4-derived peptides exhibiting such a configuration. Intriguingly, substitution of a single solvent-exposed residue enabled the parallel coiled-coil tetramer GCN4-pLI to populate the antiparallel configuration, suggesting that the two configurations are close enough in energy for subtle sequence changes to have important structural consequences. We present a structural analysis of the small changes to the helix register and side-chain conformations that accommodate the two configurations and have supplemented these results using solution studies and a molecular dynamics energetic analysis using a replica exchange methodology. Considering the previous examples of structural nonspecificity in coiled-coil peptides, the findings reported here not only emphasize the predisposition of the coiled-coil motif to adopt multiple configurations but also call attention to the associated risk that observed crytstal structures may not represent the only (or even the major) species present in solution.  相似文献   

9.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound state in solution with a dissociation constant of K(d)=1.5(+/-0.1)mM and an off-rate on the order of 10(4)s(-1). 1H and 15N NMR chemical shifts identify the dimer interface, which is in excellent agreement with that observed in the crystal structure of the dimeric S19A mutant. Two tyrosine residues of each molecule interact with the active site of the other molecule, implying that the dimer may be taken as a model for a complex between LMW-PTP and a target protein. 15N relaxation rates for the monomeric and dimeric states were extrapolated from relaxation data acquired at four different protein concentrations. Relaxation data of satisfactory precision were extracted for the monomer, enabling model-free analyses of backbone fluctuations on pico- to nanosecond time scales. The dimer relaxation data are of lower quality due to extrapolation errors and the possible presence of higher-order oligomers at higher concentrations. A qualitative comparison of order parameters in the monomeric and apparent dimeric states shows that loops forming the dimer interface become rigidified upon dimerization. Qualitative information on monomer-dimer exchange and intramolecular conformational exchange was obtained from the concentration dependence of auto- and cross-correlated relaxation rates. The loop containing the catalytically important Asp129 fluctuates between different conformations in both the monomeric and dimeric (target bound) states. The exchange rate compares rather well with that of the catalyzed reaction step, supporting existing hypotheses that catalysis and enzyme dynamics may be coupled. The side-chain of Trp49, which is important for substrate specificity, exhibits conformational dynamics in the monomer that are largely quenched upon formation of the dimer, suggesting that binding is associated with the selection of a single side-chain conformer.  相似文献   

10.
L-Valyl-L-lysine hydrochloride, C11N3O3H23 HCl, crystallizes in the monoclinic space group P2(1) with a = 5.438(5), b = 14.188(5), c = 9.521(5) A, beta = 95.38(2) degrees and Z = 2. The crystal structure, solved by direct methods, refined to R = 0.036, using full matrix least-squares method. The peptide exists in a zwitterionic form, with the N atom of the lysine side-chain protonated. The two gamma-carbons of the valine side-chain have positional disorder, giving rise to two conformations, chi 1(11) = -67.3 and 65.9 degrees, one of which (65.9 degrees) is sterically less favourable and has been found to be less popular amongst residues branching at beta-C. The lysine side-chain has the geometry of g- tgt, not seen in crystal structures of the dipeptides reported so far. Interestingly, chi 2(3) (63.6 degrees) of lysine side-chain has a gauche+ conformation unlike in most of the other structures, where it is trans. The neighbouring peptide molecules are hydrogen bonded in a head-to-tail fashion, a rather uncommon interaction in lysine peptide structures. The structure shows considerable similarity with that of L-Lys-L-Val HCl in conformational angles and H-bond interactions [4].  相似文献   

11.
12.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   

13.
14.
Zhang Z  Wriggers W 《Biochemistry》2011,50(12):2144-2156
Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play important roles in cell proliferation and signaling. The EGFR extracellular domain (sEGFR) forms a dimer upon the binding of ligands, such as epidermal growth factor (EGF) and transforming growth factor α (TGFα). In this study, multiple molecular dynamics (MD) simulations of the 2:2 EGF·sEGFR3-512 dimer and the 2:2 TGFα·sEGFR3-512 dimer were performed in solvent and crystal environments. The simulations of systems comprising up to half a million atoms reveal part of the structural dynamics of which sEGFR dimers are capable. The solvent simulations consistently exhibited a prominent conformational relaxation from the initial crystal structures on the nanosecond time scale, leading to symmetry breaking and more extensive contacts between the two sEGFR monomers. In the crystal control simulation, this symmetry breaking and compaction was largely suppressed by crystal packing contacts. The simulations also provided evidence that the disordered domain IV of sEGFR may act as a stabilizing spacer in the dimer. Thus, the simulations suggest that the sEGFR dimer can take diverse configurations in solvent environments. These biologically relevant conformations of the EGFR signal transduction network can be controlled by contacts among the structural domains of sEGFR and its ligands.  相似文献   

15.
The three-dimensional solution structure of reduced (CuI) plastocyanin from French bean leaves has been determined by distance geometry and restrained molecular dynamics methods using constraints obtained from 1H n.m.r. (nuclear magnetic resonance) spectroscopy. A total of 1244 experimental constraints were used, including 1120 distance constraints, 103 dihedral angle constraints and 21 hydrogen bond constraints. Stereospecific assignments were made for 26 methylene groups and the methyls of 11 valines. Additional constraints on copper co-ordination were included in the restrained dynamics calculations. The structures are well defined with average atomic root-mean-square deviations from the mean of 0.45 A for all backbone heavy atoms and 1.08 A for side-chain heavy atoms. French bean plastocyanin adopts a beta-sandwich structure in solution that is similar to the X-ray structure of reduced poplar plastocyanin; the average atomic root-mean-square difference between 16 n.m.r. structures and the X-ray structure is 0.76 A for all backbone heavy atoms. The conformations of the side-chains that constitute the hydrophobic core of French bean plastocyanin are very well defined. Of 47 conserved residues that populate a single chi 1 angle in solution, 43 have the same rotamer in the X-ray structure. Many surface side-chains adopt highly preferred conformations in solution, although the 3J alpha beta coupling constants often indicate some degree of conformational averaging. Some surface side-chains are disordered in both the solution and crystal structures of plastocyanin. There is a striking correlation between measures of side-chain disorder in solution and side-chain temperature factors in the X-ray structure. Side-chains that form a distinctive acidic surface region, believed to be important in binding other electron transfer proteins, appear to be disordered. Fifty backbone amide protons form hydrogen bonds to carbonyls in more than 60% of the n.m.r. structures; 45 of these amide protons exchange slowly with solvent deuterons. Ten hydrogen bonds are formed between side-chain and backbone atoms, eight of which are correlated with decreased proton exchange. Of the 60 hydrogen bonds formed in French bean plastocyanin, 56 occur in the X-ray structure of the poplar protein; two of the missing hydrogen bonds are absent as a result of mutations. It appears that molecular dynamics refinement of highly constrained n.m.r. structures allows accurate prediction of the pattern of hydrogen bonding.  相似文献   

16.
The new functionality of the program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168; Bassolino-Klimas D et al., 1996, Protein Sci 5:593-603) has been applied for energy refinement of two previously determined solution NMR structures, murine epidermal growth factor (mEGF) and human type-alpha transforming growth factor (hTGF alpha). A summary of considerations used in converting experimental NMR data into distance constraints for CONGEN is presented. A general protocol for simulated annealing with restrained molecular dynamics is applied to generate NMR solution structures using CONGEN together with real experimental NMR data. A total of 730 NMR-derived constraints for mEGF and 424 NMR-derived constraints for hTGF alpha were used in these energy-refinement calculations. Different weighting schemes and starting conformations were studied to check and/or improve the sampling of the low-energy conformational space that is consistent with all constraints. The results demonstrate that loosened (i.e., "relaxed") sets of the EGF and hTGF alpha internuclear distance constraints allow molecules to overcome local minima in the search for a global minimum with respect to both distance restraints and conformational energy. The resulting energy-refined structures of mEGF and hTGF alpha are compared with structures determined previously and with structures of homologous proteins determined by NMR and X-ray crystallography.  相似文献   

17.
Plexins are the first known transmembrane receptors that interact directly with small GTPases. On binding to certain Rho family GTPases, the receptor regulates the remodeling of the actin cytoskeleton and alters cell movement in response to semaphorin guidance cues. In a joint solution NMR spectroscopy and x-ray crystallographic study, we characterize a 120-residue cytoplasmic independent folding domain of plexin-B1 that directly binds three Rho family GTPases, Rac1, Rnd1, and RhoD. The NMR data show that, surprisingly, the Cdc42/Rac interactive binding-like motif of plexin-B1 is not involved in this interaction. Instead, all three GTPases interact with the same region, beta-strands 3 and 4 and a short alpha-helical segment of the plexin domain. The 2.0 A resolution x-ray structure shows that these segments are brought together by the tertiary structure of the ubiquitin-like fold. In the crystal, the protein is dimerized with C2 symmetry through a four-stranded antiparallel beta-sheet that is formed outside the fold by a long loop between the monomers. This region is adjacent to the GTPase binding motifs identified by NMR. Destabilization of the dimer in solution by binding of any one of the three GTPases suggests a model for receptor regulation that involves bidirectional signaling. The model implies a multifunctional role for the GTPase-plexin interaction that includes conformational change and a localization of active receptors in the signaling mechanism.  相似文献   

18.
The erythropoietin receptor (EpoR) is crucial for erythrocyte formation. The x-ray crystal structures of the EpoR extracellular domain lack the juxtamembrane (JM) region and the junction to the transmembrane (TM) domain. Yet the JM-TM regions are important for transmitting the conformational change imposed on the receptor dimer by Epo binding. Cysteine-scanning mutagenesis of the JM-TM regions identified three novel constitutively active mutants, demonstrating close disulfide-bonded juxtapositioning of these residues in the JM (L223C) and N-terminal TM domain (L226C, I227C). Chemical cross-linking defined the interface of the active helical TM dimer and revealed that the JM-TM segment encompassing Leu(226)-Leu(230) is non-helical. Molecular dynamics and NMR studies indicated that the TM-JM junction forms an N-terminal helix cap. This structure is important for EpoR function because replacement of this motif by consecutive leucines rendered the receptor constitutively active.  相似文献   

19.
The structure of a 39 amino acid proteolytic fragment of rabbit skeletal troponin C containing the fourth Ca(2+)-binding site has been determined by an approach involving nuclear magnetic resonance (NMR) spectroscopy combined with hybrid distance geometry-dynamical simulated annealing calculations. Hydrodynamic and NMR evidence establishes unambiguously that the fragment forms a stable dimer in solution in the presence of excess Ca2+. The calculation of the dimeric structure is based on a total of 1056 experimental restraints comprising 422 interproton distances, 35 phi, 28 psi, and 28 chi 1 torsion angle restraints within each subunit, 30 intermonomer distance restraints, and 6 Ca2+ restraints per subunit. A total of 48 final structures were calculated having an rms deviation about the mean atomic backbone coordinate positions of 1.0 A for residues Asp128-Glu156. The solution structure consists of a dimer of helix-loop-helix motifs related by a 2-fold axis of symmetry. The overall architecture of the dimer is very similar to the C-terminal domain in the crystal structure of chicken skeletal troponin C.  相似文献   

20.
Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 Å resolution. The peptide monomer shows a helix trunk with short curved N‐ and C‐termini. In the crystal, two monomers cross in 35° and form an X‐shaped dimer, and each X‐shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two‐stranded, parallel, super long coiled coil rather than a discrete, two‐helix coiled coil of the wild‐type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild‐type leucine zipper, the N‐terminus of the mutant has a dramatic conformational change and the C‐terminus has one more residue Glu 32 determined. The mutant X‐shaped dimer has a large crossing angle of 35° instead of 18° in the wild‐type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self‐assembling protein fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号