首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a combination of mutagenesis with the transposon and polymerase chain reaction subcloning, the essential elements of the replication region of the Lactococcus lactis subsp. lactis biovar diacetylactis citrate plasmid have been identified. An open reading frame, coding for a protein with homology to Rep proteins from other Lactococcus plasmids, is essential. This protein is trans-acting and could not be replaced by the Rep protein from another Lactococcus plasmid. A second open reading frame immediately downstream from the first could be removed or inactivated with no apparent effect on plasmid replication. A region containing two 10 by direct repeats and three tandem repeats of a 22 by sequence, immediately upstream of the essential open reading frame, is also essential and probably includes the origin of replication. A 181-bp DNA fragment containing this region was sufficient to allow replication in Lactococcus if the trans-acting protein was provided on another replicon. Single-stranded replication intermediates could not be detected, suggesting that the citrate plasmid uses theta replication rather than rolling-circle replication.  相似文献   

2.
An apparently full-length complementary DNA copy of in vitro polyadenylated MS2 RNA was synthesized with avian myeloblastosis virus RNA-dependent DNA polymerase. After the MS2 RNA template was removed from the complementary DNA strand with T1 and pancreatic RNase digestion, the complementary DNA became a good template for the synthesis of double-stranded MS2 DNA with Escherichia coli DNA polymerase I. We then constructed molecular chimeras by inserting the double-stranded MS2 DNA into the PstI restriction endonuclease cleavage site of the E. coli plasmid pBR322 by means of the poly(dA)· poly(dT) tailing procedure. An E. coli transformant carrying a plasmid with a nearly full-length MS2 DNA insertion, called pMS2-7, was chosen for further study. Correlation between the restriction cleavage site map of pMS2-7 DNA and the cleavage map predicted from the primary structure of MS2 RNA, and nucleotide sequence analysis of the 5′ and 3′ end regions of the MS2 DNA insertion, showed that the entire MS2 RNA had been faithfully copied, and that, except for 14 nucleotides corresponding to the 5′-terminal sequence of MS2 RNA, the fulllength DNA copy of the viral genetic information had been inserted into the plasmid. Restriction endonuclease analysis of the chimera plasmid DNA also revealed the presence of an extra DNA insertion which was identified as the translocatable element IS13 (see following paper).  相似文献   

3.
Summary DNA synthesis in vitro using intact duplex T7 DNA as template is dependent on a novel group of three phage T7-induced proteins: DNA-priming protein (activity which complements a cell extract lacking the T7 gene 4-protein), T7 DNA polymerase (gene 5-protein plus host factor), and T7 DNA-binding protein. The reaction requires, in addition to the four deoxyribonucleoside triphosphates, all four ribonucleoside triphosphates and is inhibited by low concentrations of actinomycin D. Evidence is presented that the priming protein serves as a novel RNA polymerase to form a priming segment which is subsequently extended by T7 DNA polymerase. T7 RNA polymerase (gene 1-protein) can only partially substitute for the DNA-priming protein. At 30°C, deoxyribonucleotide incorporation proceeds for more than 2 hours and the amount of newly synthesized DNA can exceed the amount of template DNA by 10-fold. The products of synthesis are not covalently attached to the template and sediment as short (12S) DNA chains in alkaline sucrose gradients. Sealing of these fragments into DNA of higher molecular weight requires the presence of E. coli DNA polymerase I and T7 ligase. Examination of the products in the electron microscope reveals many large, forked molecules and a few eye-shaped structures resembling the early replicative intermediates normally observed in vivo.  相似文献   

4.
We have previously shown that the synthesis of ribosomal proteins (r proteins) in E. coli cells is under stringent control (Dennis and Nomura, 1974). Since guanosine tetraphosphate (ppGpp) had been implicated in stringent control, we examied the effects of ppGpp on the in vitro synthesis of r proteins directed by DNA from transducing phage λfus3 and λrifd18. λfus3 carries genes for protein elongation factors EF-Tu and EF-G, and RNA polymerase subunit α, in addition to genes for approximately 27 r proteins. λrifd18 carries genes for EF-Tu, RNA polymerase subunits β and βI, and a set of rRNAs, in addition to genes for approximately five r proteins. We have shown that low concentrations of ppGpp (0.2–0.3 mM) specifically inhibit DNA-dependent r protein synthesis in this system, and that this inhibition takes place directly, rather than as a consequence of the inhibition of rRNA synthesis by ppGpp. In addition, we have also shown that ppGpp inhibits the synthesis of EF-G, EF-Tu, and RNA polymerase subunit α, as well as rRNAs.  相似文献   

5.
A meiotic DNA polymerase that is present at a high level of activity in meiotic cells of a basidiomycete, Coprinus cinereus, was purified to near homogeneity using synthetic RNA homopolymer [poly(C)] cellulose column chromatography. This report presents the first extensive purification and characterization of any eukaryotic DNA polymerase having a role in meiosis. This enzyme is a single polypeptide with a molecular mass of 65,000. Activity in this enzyme requires magnesium ions and occurs at an optimal pH of 7.5. It is strongly inhibited by dideoxythymidine triphosphate but is relatively insensitive to aphidicolin and N-ethylmaleimide and can use poly(C)/oligo(dG)12–18 as a template-primer. Polymerase activity can be found only in cells at meiotic prophase, even though the enzyme has been identified in somatic cells in an inactive state using immunoblot analysis. Its distinctive distribution makes possible a genetic and biochemical analysis of functional role of a meiotic DNA polymerase in meiotic recombination, repair and synthesis.Abbreviations ddTTP 2,3-dideoxythymidine 5-triphosphate - NEM N-ethylmaleimide - PMSF phenylmethylsulfnylfluoride - BSA bovine serum albumin  相似文献   

6.
Summary Replication of the non-conjugative plasmids ColE1, ColE2 and ColE3 has been examined in a number of DNA polymerase I-deficient strains, two of which contain the amber mutationpolA1 along with either of two temperature-sensitivesupF amber suppressors. These latter two strains produce reduced amounts of DNA polymerase I polymerizing activity of similar, if not identical properties to that produced bypolA+ strains. Our results indicate that the ColE plasmids require different amounts of DNA polymerase I for stable plasmid maintenance. Moreover whereas all three plasmids are maintained in a strain defective in the 53 exonuclease activity of DNA polymerase I, ColE2 and ColE3 are not stably maintained between 30° and 43° in a number of DNA polymerase I-deficient strains that are temperature-sensitive for ColE1 replication.  相似文献   

7.
Summary pMV158 is a 5.4 kb broad host range multicopy plasmid specifying tetracycline resistance. This plasmid and two of its derivatives, pLS1 and pLS5, are stably mantained and express their genetic information in gram-positive and gram-negative hosts. The in vitro replication of plasmid pMV158 and its derivatives was studied in extracts prepared from plasmid-free Escherichia coli cells and the replicative characteristics of the streptococcal plasmids were compared to those of the E. coli replicons, ColE1 and the mini-R1 derivative pKN182. The optimal replicative activity of the E. coli extracts was found at a cellular phase of growth that corresponded to 2 g wet weight of cells per litre. Maximal synthesis of streptococcal plasmid DNA occurred after 90 min of incubation and at a temperature of 30° C. The optimal concentration of template DNA was 40 g/ml. Higher plasmid DNA concentrations resulted in a decrease in the incorporation of dTMP, indicating that competition of specific replication factor(s) for functional plasmid origins may occur. In vitro replication of plasmid pMV158 and its serivatives required the host RNA polymerase and de novo protein synthesis. The final products of the streptococcal plasmid DNAs replicated in the E. coli in vitro system were monomeric supercoiled DNA forms that had completed at least one round of replication, although a set of putative replicative intermediates could also be found. The results suggest that a specific plasmid-encoded factor is needed for the replication of the streptococcal plasmids.  相似文献   

8.
9.
The synthesis of both strands of CaMV-DNA has been studied in vitro using viral replication complexes obtained by hypotonic extraction of infected plant organelles. Hybridization of the DNA synthesized in vitro to single stranded CaMV DNA probes cloned in bacteriophage M 13 confirmed that the 35 S RNA served as a template for the synthesis of the (–) DNA strand. The response of CaMV DNA synthesis to various inhibitors suggests that a single enzyme directs both steps of the replication cycle. A comparative activity gel analysis of the DNA polymerases present in nuclear extracts from healthy and CaMV-infected turnips revealed an increase of a DNA polymerase species migrating in the 75 Kd range in infected tissue. When the enzyme activity associated with the isolated replicative complexes was similarly analyzed, the 75 Kd polymerase was markedly predominant, confirming that DNA polymerases of the -type (MW in the 110 Kd range) are not involved in the aphidicolin-insensitive CaMV DNA replication. It seems therefore increasingly probable that CaMV codes for its own polymerase.  相似文献   

10.
Summary Sixty-eight new conditional cell cycle mutants have been isolated on the basis of their terminal cellular morphology (dumbbells). Fifteen mutants falling into nine complementation groups, were grossly defective in DNA replication and have been assigned the provisional gene symboldbf (fordumbbellformer). Dbf1 and2 stop DNA synthesis immediately on transfer to 37°C and are presumably defective in enzymes required for polymerization. Neither, however, possess a thermolabile DNA polymerase A or B.Dbf3 and4 show a pattern of synthesis consistent with their being deficient in initiation of DNA synthesis. This is confirmed in the accompanying paper.The remaining mutants are deficient in the synthesis of RNA as well as DNA. Indeed the four members of one complementation group are allelic withrna3, one of the group of mutants originally isolated as defective in RNA synthesis, and which do not exhibit a cell cycle phenotype. A re-examination of this group of mutants however, showed the bulk of them also to be defective in DNA synthesis. Furthermore, in preliminary experimentsrna3 and our four new alleles of it, together withrna6 anddbf5 and6, showed enhanced spontaneous mutation frequency.  相似文献   

11.
12.
Summary The Escherichia coli mutants 7009 and BR3 are defective in the growth of bacteriophage T7. We have previously shown that both of these mutant hosts produce an altered RNA polymerase which is resistant to inhibition by the T7 gene 2 protein (De Wyngaert and Hinkle 1979). In both strains, the mutation which prevents T7 growth is closely linked to rifA (rpoB). Both mutants are complemented by transformation with a multicopy plasmid carrying rpoB and rpoC but not by a plasmid carrying only rpoB. This indicates that the mutations reside in rpoC, the structural gene for the subunit of RNA polymerase. When a single copy of the wildtype rpoC allele is introduced into the mutant using the transducing phage drif d18, the mutant allele is dominant over wildtype. The drif d18 transductant also remains unable to support the growth of T7 in the presence of rifampin. This supports our conclusion that the mutation is in rpoC. We have measured the growth of T7 phage, the kinetics of phage DNA synthesis, and the structure of replicative DNA intermediates in several transductants, and compared these results with those obtained in the original mutant strains.  相似文献   

13.
14.
15.
Summary The replication of the bacteriocinogenic factor Clo DF13 was studied in Escherichia coli mutants which lack either DNA polymerase I (polA1 and resA1 mutants), DNA polymerase II (polB1 mutant) or DNA polymerase III (dnaE mutant). DNA polymerase I is required for Clo DF13 replication. The Clo DF13 factor, however, can be maintained in a strain carrying the polA107 mutation and thus lacking the 53 exonucleolytic activity of DNA polymerase I. DNA polymerase II is not required for transfer replication and maintenance of the Clo DF13 plasmid. In the temperature sensitive dnaE mutant, Clo DF13 can replicate at the nonpermissive temperature during the first two hours after the temperature shift from 30°C to 43°C. During this period DNA polymerase III seems not to be essential for Clo DF13 replication.  相似文献   

16.
Summary EcoRI fragments of the transducing phage fus3 DNA have been linked to the ColEl derivative plasmid RSF2124 (ColEl-Apr) DNA using bacteriophage T4 ligase. Among the plasmids formed, one designated pTUAl was found to contain the E. coli tufA gene. The proof for the presence of tufA gene in pTUAl is based on the following observations: (1) ability of pTUAl DNA and its EcoRI fragments to direct synthesis of EF-Tu in a cell-free protein synthesizing system; and (2) RNA·DNA hybridization of RNA transcribed from phage rif d18 carrying tufB with DNA from pTUAl.  相似文献   

17.
18.
A key set of reactions for the initiation of new DNA strands during herpes simplex virus-1 replication consists of the primase-catalyzed synthesis of short RNA primers followed by polymerase-catalyzed DNA synthesis (i.e. primase-coupled polymerase activity). Herpes primase (UL5-UL52-UL8) synthesizes products from 2 to ∼13 nucleotides long. However, the herpes polymerase (UL30 or UL30-UL42) only elongates those at least 8 nucleotides long. Surprisingly, coupled activity was remarkably inefficient, even considering only those primers at least 8 nucleotides long, and herpes polymerase typically elongated <2% of the primase-synthesized primers. Of those primers elongated, only 4–26% of the primers were passed directly from the primase to the polymerase (UL30-UL42) without dissociating into solution. Comparing RNA primer-templates and DNA primer-templates of identical sequence showed that herpes polymerase greatly preferred to elongate the DNA primer by 650–26,000-fold, thus accounting for the extremely low efficiency with which herpes polymerase elongated primase-synthesized primers. Curiously, one of the DNA polymerases of the host cell, polymerase α (p70-p180 or p49-p58-p70-p180 complex), extended herpes primase-synthesized RNA primers much more efficiently than the viral polymerase, raising the possibility that the viral polymerase may not be the only one involved in herpes DNA replication.Herpes simplex virus 1 (HSV-1)2 encodes seven proteins essential for replicating its double-stranded DNA genome; five of these encode the heterotrimeric helicase-primase (UL5-UL52-UL8 gene products) and the heterodimeric polymerase (UL30-UL42 gene products) (1, 2). The helicase-primase unwinds the DNA at the replication fork and generates single-stranded DNA for both leading and lagging strand synthesis. Primase synthesizes short RNA primers on the lagging strand that the polymerase presumably elongates using dNTPs (i.e. primase-coupled polymerase activity). These two protein complexes are thought to replicate the viral genome on both the leading and lagging strands (1, 2).Previous studies have focused on the helicase-primase and polymerase separately. The helicase-primase contains three subunits, UL5, UL52, and UL8 in a 1:1:1 ratio (35). The UL5 subunit has helicase-like motifs and the UL52 subunit has primase-like motifs, yet the minimal active complex that demonstrates either helicase or primase activities contains both UL5 and UL52 (6, 7). Although the UL8 subunit has no known catalytic activity, several functions have been proposed, including enhancing helicase and primase activities, enhancing primer synthesis on ICP8 (the HSV-1 single-stranded binding protein)-coated DNA strands, and facilitating formation of the replisome (812). Although primase will synthesize short (23 nucleotides long) primers on a variety of template sequences, synthesis of longer primers up to 13 nucleotides long requires the template sequence, 3′-deoxyguanidine-pyrimidine-pyrimidine-5′ (13). Primase initiates synthesis at the first pyrimidine via the polymerization of two purine NTPs (13). Even after initiation at this sequence, however, the vast majority of products are only 2–3 nucleotides long (13, 14).The herpes polymerase consists of the UL30 subunit, which has polymerase and 3′ → 5′ exonuclease activities (1, 2), and the UL42 subunit, which serves as a processivity factor (1517). Unlike most processivity factors that encircle the DNA, the UL42 protein binds double-stranded DNA and thus directly tethers the polymerase to the DNA (18). Using pre-existing DNA primer-templates as the substrate, the heterodimeric polymerase (UL30-UL42) incorporates dNTPs at a rate of 150 s–1, a rate much faster than primer synthesis (for primers >7 nucleotides long, 0.0002–0.01 s–1) (19, 20).We examined primase-coupled polymerase activity by the herpes primase and polymerase complexes. Although herpes primase synthesizes RNA primers 2–13 nucleotides long, the polymerase only effectively elongates those at least 8 nucleotides long. Surprisingly, the polymerase elongated only a small fraction of the primase-synthesized primers (<1–2%), likely because of the polymerase elongating RNA primer-templates much less efficiently than DNA primer-templates. In contrast, human DNA polymerase α (pol α) elongated the herpes primase-synthesized primers very efficiently. The biological significance of these data is discussed.  相似文献   

19.
Summary The gene (cytA) coding for the 27 kDa polypeptide of the Bacillus thuringiensis var. israelensis mosquito larvicidal -endotoxin, was cloned into a plasmid containing the T7 bacteriophage promoter. The plasmid was used to transform an Escherichia coli strain containing the T7 RNA polymerase gene 1, under the control of lacP. Loss of colony-forming ability without substantial lysis, associated with immediate inhibition of DNA synthesis, was observed after induction of transformed cells. The cytA gene product may kill E. colicells by disrupting their chromosome replicating apparatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号