首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phanerochaete chrysosporium decolorized several polyaromatic azo dyes in ligninolytic culture. The oxidation rates of individual dyes depended on their structures. Veratryl alcohol stimulated azo dye oxidation by pure lignin peroxidase (ligninase, LiP) in vitro. Accumulation of compound II of lignin peroxidase, an oxidized form of the enzyme, was observed after short incubations with these azo substrates. When veratryl alcohol was also present, only the native form of lignin peroxidase was observed. Azo dyes acted as inhibitors of veratryl alcohol oxidation. After an azo dye had been degraded, the oxidation rates of veratryl alcohol recovered, confirming that these two compounds competed for ligninase during the catalytic cycle. Veratryl alcohol acts as a third substrate (with H2O2 and the azo dye) in the lignin peroxidase cycle during oxidations of azo dyes.  相似文献   

2.
The ability of the white-rot fungus Lentinula (Lentinus) edodes to decolorize several synthetic dyes was investigated using solid state cultures with corn cob as substrate. Cultures, containing amido black, congo red, trypan blue, methyl green, remazol brilliant blue R, methyl violet, ethyl violet and Poly R478 at 200 ppm, were completely decolorized after 18 days of incubation. Partial decolorization was observed in the cultures containing 200 ppm of brilliant cresyl blue and methylene blue. High manganese peroxidase activity (2600 U/g substrate), but very low lignin peroxidase (<10 U/g substrate) and laccase (<16 U/g substrate) activities were detected in the cultures. In vitro, the dye decolorization was markedly decreased by the absence of manganic ions and H2O2. These data suggest that manganese peroxidase appear to be the main responsible for the capability of L. edodes to decolorize synthetic dyes.  相似文献   

3.
White rot fungi were collected from Chirinda and Chimanimani hardwood forests in Zimbabwe and studied with respect to growth temperature optima and dye decolorization. Temperature optima were found to vary (between 25-37 degrees C) amongst the isolates. The isolates were screened for their ability to degrade the polymeric dyes; blue dextran and Poly R478 and the triphenylmethane dyes; cresol red, crystal violet and bromophenol blue. Semi-quantitative determination of the hydrolytic enzyme activities possessed by the white rot fungi was determined using the API ZYM system. Lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase activities in the fungi were also determined. No LiP was detected in any of the isolates but all isolates showed manganese peroxidase and laccase activities. Time related decolorization studies and optimum pH determinations for Poly R478 degradation by the isolates were carried out in liquid cultures. The most significant rates of Poly R478 decolorization in liquid cultures were found with the following isolates: Trametes cingulata, Trametes versicolor, Trametes pocas, DSPM95 (a species to be identified), Datronia concentrica and Pycnoporus sanguineus.  相似文献   

4.
One laccase-secreting engineered strain and four white-rot fungi were tested for their capacity to decolorize nine dyes that could be classified as azo, anthraquinonic and triphenylmethane dyes. Trametes versicolor was the most efficient of the tested strains under these experimental conditions. Anthraquinonic dyes were decolorized more easily than the other two types. Small structural differences among the dyes could significantly affect decolorization. None of the strains showed lignin peroxidase or veratryl alcohol oxidase activity. None of the dyes were decolorized completely by laccase alone. It is likely that other phenoloxidases, such as Mn-dependent and versatile peroxidase, were also involved in decolorization of the dyes.  相似文献   

5.
The ability of a Brazilian strain ofPleurotus pulmonarius to decolorize structurally different synthetic dyes (including azo, triphenylmethane, heterocyclic and polymeric dyes) was investigated in solid and submerged cultures. Both were able to decolorize completely or partially 8 of 10 dyes (Amido Black, Congo Red, Trypan Blue, Methyl Green, Remazol Brilliant Blue R, Methyl Violet, Ethyl Violet, Brilliant Cresyl Blue). No decolorization of Methylene Blue and Poly R 478 was observed. Of the four phenol-oxidizing enzymes tested in culture filtrates (lignin peroxidase, manganese peroxidase, aryl alcohol oxidase, laccase),P. pulmonarius produced only laccase. Both laccase activity and dye decolorization were related to glucose and ammonium starvation or to induction by ferulic acid. The decolorizationin vivo was tested using three dyes — Remazol Brilliant Blue R, Trypan Blue and Methyl Green. All of them were completely decolorized by crude extracellular extracts. Decolorization and laccase activity were equally affected by pH and temperature. Laccase can thus be considered to be the major enzyme involved in the ability ofP. pulmonarius to decolorize industrial dyes.  相似文献   

6.
Two major peroxidases are secreted by the fungus Pleurotus eryngii in lignocellulose cultures. One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase. The second protein (PS1), although catalyzing the oxidation of Mn2+ to Mn3+ by H2O2, differs from the above enzymes by its manganese-independent activity enabling it to oxidize substituted phenols and synthetic dyes, as well as the lignin peroxidase (LiP) substrate veratryl alcohol. This is by a mechanism similar to that reported for LiP, as evidenced by p-dimethoxybenzene oxidation yielding benzoquinone. The apparent kinetic constants showed high activity on Mn2+, but methoxyhydroquinone was the natural substrate with the highest enzyme affinity (this and other phenolic substrates are not efficiently oxidized by the P. chrysosporium peroxidases). A three-dimensional model was built using crystal models from four fungal peroxidase as templates. The model suggests high structural affinity of this versatile peroxidase with LiP but shows a putative Mn2+ binding site near the internal heme propionate, involving Glu36, Glu40, and Asp181. A specific substrate interaction site for Mn2+ is supported by kinetic data showing noncompetitive inhibition with other peroxidase substrates. Moreover, residues reported as involved in LiP interaction with veratryl alcohol and other aromatic substrates are present in peroxidase PS1 such as His82 at the heme-channel opening, which is remarkably similar to that of P. chrysosporium LiP, and Trp170 at the protein surface. These residues could be involved in two different hypothetical long range electron transfer pathways from substrate (His82-Ala83-Asn84-His47-heme and Trp170-Leu171-heme) similar to those postulated for LiP.  相似文献   

7.
Synthetic textile dyes are among the most dangerous chemical pollutants released in industrial wastewater streams. Recognizing the importance of reducing the environmental impact of these dyes, the ability of the white rot fungus Phanerochaete chrysosporium to decolorize various textile dyes was investigated. This fungus decolorized 6 of the 14 structurally diverse dyes with varying efficiency (between 14% and 52%). There was no discernable pattern of decolorization even among dyes of the same chemical class, suggesting that attack on the dyes is relatively non-specific. Among the three dyes which showed >40% decolorization, Victoria Blue B (VB) was chosen for further analysis because the ability of the fungus to decolorize VB was nearly independent over a relatively broad concentration range. Blocking lignin peroxidase (LiP) and manganese peroxidase (MnP) production by the fungus did not substantially affect VB decolorization. Inhibition of laccase production by adding various inhibitors to shaken cultures reduced VB decolorization significantly suggesting a role for laccase in VB decolorization. When sodium azide and aminotriazole were used to inhibit endogenous catalase and cytochrome P-450 oxygenase activities, there was 100% and 70% reduction in VB decolorization, respectively. Adding benzoate to trap hydrogen peroxide-derived hydroxyl radicals resulted in 50% decolorization of VB. Boiling the extracellular fluid (ECF) for 30 min resulted in approximately 50% reduction in VB decolorization. Collectively, these data suggest that laccase, and/or oxygenase/oxidase and a heat-stable non-enzymatic factor, but not Lip and MnP, play a role in VB decolorization by P. chrysosporium.  相似文献   

8.
Neem hull waste (containing a high amount of lignin and other phenolic compounds) was used for lignin peroxidase production byPhanerochaete chrysosporum under solid-state fermentation conditions. Maximum decolorization achieved by partially purified lignin peroxidase was 80% for Porocion Brilliant Blue HGR, 83 for Ranocid Fast Blue, 70 for Acid Red 119 and 61 for Navidol Fast Black MSRL. The effects of different concentrations of veratryl alcohol, hydrogen peroxide, enzyme and dye on the efficiency of decolorization have been investigated. Maximum decolorization efficiency was observed at 0.2 and 0.4 mmol/L hydrogen peroxide, 2.5 mmol/L veratryl alcohol and pH 5.0 after a 1-h reaction, using 50 ppm of dyes and 9.96 mkat/L of enzyme.  相似文献   

9.
J L Popp  B Kalyanaraman  T K Kirk 《Biochemistry》1990,29(46):10475-10480
Veratryl alcohol (3,4-dimethoxybenzyl alcohol) appears to have multiple roles in lignin degradation by Phanerochaete chrysosporium. It is synthesized de novo by the fungus. It apparently induces expression of lignin peroxidase (LiP), and it protects LiP from inactivation by H2O2. In addition, veratryl alcohol has been shown to potentiate LiP oxidation of compounds that are not good LiP substrates. We have now observed the formation of Mn3+ in reaction mixtures containing LiP, Mn2+, veratryl alcohol, malonate buffer, H2O2, and O2. No Mn3+ was formed if veratryl alcohol or H2O2 was omitted. Mn3+ formation also showed an absolute requirement for oxygen, and oxygen consumption was observed in the reactions. This suggests involvement of active oxygen species. In experiments using oxalate (a metabolite of P. chrysosporium) instead of malonate, similar results were obtained. However, in this case, we detected (by ESR spin-trapping) the production of carbon dioxide anion radical (CO2.-) and perhydroxyl radical (.OOH) in reaction mixtures containing LiP, oxalate, veratryl alcohol, H2O2, and O2. Our data indicate the formation of oxalate radical, which decays to CO2 and CO2.-. The latter reacts with O2 to form O2.-, which then oxidizes Mn2+ to Mn3+. No radicals were detected in the absence of veratryl alcohol. These results indicate that LiP can indirectly oxidize Mn2+ and that veratryl alcohol is probably a radical mediator in this system.  相似文献   

10.
The decolorizing capacity of 26 white rot fungi from Argentina was investigated. Extracellular production of ligninolytic enzymes by mycelium growing on solid malt extract/glucose medium supplemented with different dyes (Malachite Green, Azure B, Poly R-478, Anthraquinone Blue, Congo Red and Xylidine), dye decolorization and the relationship between these two processes were studied. Only ten strains decolorized all the dyes, all ten strains produced laccase, lignin peroxidase and manganese peroxidase on solid medium. However, six of the strains could not decolorize any of the dyes; all six strains tested negative for lignin peroxidase, and produced less than 0.05 U/g agar of manganese peroxidase. Comparing the isolates with the well-known dye-degrader Phanerochaete chrysosporium, a new fungus was identified: Coriolus versicolor f. antarcticus, potentially a candidate for use in biodecoloration processes. Eighteen day-old cultures of this fungus were able to decolorize in an hour 28%, 30%, 43%, 88% and 98% of Xylidine (24 mg/l), Poly R-478 (75 mg/l), Remazol Brilliant Blue R (9 mg/l), Malachite Green (6 mg/l) and Indigo Carmine (23 mg/l), respectively. Laccase activity was 0.13 U/ml, but neither lignin peroxidase nor manganese peroxidase were detected in the extracellular fluids for that day of incubation.  相似文献   

11.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

12.
A Box-Wilson central composite design was applied to optimize copper, veratryl alcohol and l-asparagine concentrations for Trametes trogii (BAFC 212) ligninolytic enzyme production in submerged fermentation. Decolorization of different dyes (xylidine, malachite green, and anthraquinone blue) by the ligninolytic fluids from the cultures was compared. The addition of copper stimulated laccase and glyoxal oxidase production, but this response was influenced by the medium N-concentration, with improvement higher at low N-levels. The medium that supported the highest ligninolytic production (22.75 U/ml laccase, 0.34 U/ml manganese peroxidase, and 0.20 U/ml glyoxal oxidase) also showed the greatest ability to decolorize the dyes. Only glyoxal oxidase activity limited biodecoloration efficiency, suggesting the involvement of peroxidases in the process. The addition of 1-hydroxybenzotriazole (a known laccase mediator) to the ligninolytic fluids increased both their range and rate of decolorization. The cell-free supernatant did not decolorize xylidine, poly R-478, azure B, and malachite green as efficiently as the whole broth, but results were similar in the case of indigo carmine and remazol brilliant blue R. This indicates that the mycelial biomass may supply other intracellular or mycelial-bound enzymes, or factors necessary for the catalytic cycle of the enzymes. It also implies that this fungus implements different strategies to degrade dyes with diverse chemical structures.  相似文献   

13.
担子菌PM2在限氮液体培养下,分泌木质素过氧化物酶和锰过氧化物酶;藜芦醇、吐温 80的补充,提高了该菌锰过氧化物酶的产生,获得的最大锰过氧化物酶Mnp酶活为254.2u/L、190.2 u/L,分别是对照的3.4倍和2.5倍。选择三种偶氮染料,在染料体系下,进一步分析藜芦醇、吐温 80对担子菌PM2产过氧化物酶及染料脱色的影响。结果表明,担子菌PM2分泌的锰过氧化物酶Mnp与染料脱色有关,脱色程度受其分子结构特征影响;吐温80的补充,更有利于染料的脱色降解,48h后三种染料均可达到80%以上的脱色率。  相似文献   

14.
The mineralization rate of LC-[1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] (DDT) was reduced by 90% on the 18th day in fungal cultures of Phanerochaete chrysosporium in the presence of 8 mM ethylenediamine tetraacetic acid (EDTA). In the presence of 8 mM N-N-N'-N'-tetramethylenediamine (TEMED), the mineralization rate of 14C-DDT was reduced by 80%. In the presence of 2 mM or 10 mM EDTA, 95% inhibition of lignin peroxidase (LiP) mediated veratryl alcohol oxidase activity and 97% inhibition of LiP mediated iodide oxidase activity occurred. TEMED caused 79% inhibition of veratryl alcohol oxidase activity and 92% inhibition of iodide oxidase activity when the amount used was 2 mM and 10 mM, respectively. In the presence of Zn(II) with slight molar excess of the EDTA concentration, reversed the EDTA mediated non-competitive inhibition of LiP catalyzed veratryl alcohol or iodide oxidation, Zn(II) also reversed the inhibition of LiP catalyzed veratryl alcohol oxidase activity caused by chelators other than EDTA and TEMED. In addition to Zn(II), several other metal ions also relieved EDTA mediated inhibition of veratryl alcohol and iodide oxidase activity catalyzed by LiP. The ability of veratryl alcohol to inhibit iodide oxidation catalyzed by LiP showed that veratryl alcohol could inhibit LiP mediated iodide oxidase activity. Increasing the concentration of iodide was also shown to inhibit veratryl alcohol oxidation. Kinetic analysis showed that the reaction was competitive inhibition.  相似文献   

15.
李思  程伟  张富美  尚晓静  侯瑞 《菌物学报》2021,40(6):1511-1524
利用组织分离从未成熟有机蓝莓的表皮中分离出菌株G14,根据其菌落形态、ITS序列对比及系统发育树的分析,鉴定菌株G14为一株烟管孔菌Bjerkandera adusta.菌株G14可以分泌漆酶(laccase,Lac)、木质素过氧化物酶(lignin peroxidase,LiP)和锰过氧化物酶(manganese p...  相似文献   

16.
Catalytic mechanisms and regulation of lignin peroxidase.   总被引:3,自引:0,他引:3  
Lignin peroxidase (LiP) is a fungal haemoprotein similar to the lignin-synthesizing plant peroxidases, but it has a higher oxidation potential and oxidizes dimethoxylated aromatic compounds to radical cations. It catalyses the degradation of lignin models but in vitro the outcome is net lignin polymerization. LiP oxidizes veratryl alcohol to radical cations which are proposed to act by charge transfer to mediate in the oxidation of lignin. Phenolic compounds are, however, preferentially oxidized, but transiently inactivate the enzyme. Analysis of the catalytic cycle of LiP shows that in the presence of veratryl alcohol the steady-state turnover intermediate is Compound II. We propose that veratryl alcohol is oxidized by the enzyme intermediate Compound I to a radical cation which now participates in charge-transfer reactions with either veratryl alcohol or another reductant, when present. Reduction of Compound II to native state may involve a radical product of veratryl alcohol or radical product of charge transfer. Phenoxy radicals, by contrast, cannot engage in charge-transfer reactions and reaction of Compound II with H2O2 ensues to form the peroxidatically inactive intermediate, Compound III. Regulation of LiP activity by phenolic compounds suggests feedback control, since many of the products of lignin degradation are phenolic. Such control would lower the concentration of phenolics relative to oxygen and favour degradative ring-opening reactions.  相似文献   

17.
The production of ligninolytic enzymes by the fungus Schizophyllum sp. F17 using a cost-effective medium comprised of agro-industrial residues in solid-state fermentation (SSF) was optimized. The maximum activities of the enzymes manganese peroxidase (MnP), laccase (Lac), and lignin peroxidases (LiP) were 1,200, 586, and 109 U/L, respectively, on day 5 of SSF. In vitro decolorization of three structurally different azo dyes by the extracellular enzymes was monitored to determine its decolorization capability. The results indicated that crude MnP, but not LiP and Lac, played a crucial role in the decolorization of azo dyes. After optimization of the dye decolorization system with crude MnP, the decolorization rates of Orange IV and Orange G, at an initial dye concentration of 50 mg/L, were enhanced to 76 and 57%, respectively, after 20 min of reaction at pH 4 and 35°C. However, only 8% decolorization of Congo red was observed. This enzymatic reaction system revealed a rapid decolorization of azo dyes with a low MnP activity of 24 U/L. Thus, this study could be the basis for the production and application of MnP on a larger scale using a low-cost substrate.  相似文献   

18.
Oxidation of veratryl alcohol by lignin peroxidase (LiP) was potently inhibited by oxalic acid. The inhibition analysis with Lineweaver-Burk plots clearly showed that the type of inhibition is non-competitive. The enzymatic oxidation of veratryl alcohol in the presence of 14C-oxalic acid yielded radioactive carbon dioxide. The results indicate that the apparent inhibition of LiP is caused by reduction of the veratryl alcohol cation radical intermediate back to the substrate level by oxalate, which is concomitantly oxidized to carbon dioxide.  相似文献   

19.
通过诱变得到十一株木素过氧化物酶酶活降低的黄孢原毛平革菌(Phanerochaetechrysosporium)突变株,用灰色理论分析了其木素过氧化物酶类的产生与木素降解能力间的相关性,并从中筛选到一株木素过氧化物酶缺陷、锰过氧化物酶酶活明显降低的突变株,其木素降解能力为原始菌株的80%左右。该菌粗酶液作用于纤维素酶酶解杉木木素和天然褐腐木素,可产生小分子的木素降解产物,此反应不需H2O2参与。红外光谱分析表明粗酶液对木素的作用主要为氧化作用,因此推测此突变株粗酶液中含有不同于木素过氧化物酶和锰过氧化物酶的与木素氧化降解有关的酶类  相似文献   

20.
张富美  侯瑞 《菌物学报》2019,38(9):1527-1537
本研究从未成熟的有机蓝莓表皮分离、纯化得到一株白腐真菌G11,通过对菌株G11的形态特征、ITS序列同源性比对以及系统发育分析,鉴定菌株G11为一株烟管孔菌Bjerkandera adusta。菌株G11可以产生木质素过氧化物酶、漆酶和锰过氧化物酶等木质素降解酶。菌株G11对8种不同染料的脱色效果显示其对活性染料的脱色效果最好,脱色率达到90%所需时间最短。以菌株G11为研究对象,研究其对不同浓度的活性黑和活性红的脱色能力,结果表明:菌株G11对活性红和活性黑具有显著的脱色能力。在脱色15d时,菌株G11对浓度为10、50、100、250、500mg/L活性红的脱色率分别为99%、98%、95%、94%和92%;对浓度为10、50、100、250、500mg/L活性黑的脱色率分别为98%、97%、95%、93%和90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号