首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented.  相似文献   

2.
Bop1 is a novel nucleolar protein involved in rRNA processing and ribosome assembly. We have previously shown that expression of Bop1Delta, an amino-terminally truncated Bop1 that acts as a dominant negative mutant in mouse cells, results in inhibition of 28S and 5.8S rRNA formation and deficiency of newly synthesized 60S ribosomal subunits (Z. Strezoska, D. G. Pestov, and L. F. Lau, Mol. Cell. Biol. 20:5516-5528, 2000). Perturbation of Bop1 activities by Bop1Delta also induces a powerful yet reversible cell cycle arrest in 3T3 fibroblasts. In the present study, we show that asynchronously growing cells are arrested by Bop1Delta in a highly concerted fashion in the G(1) phase. Kinase activities of the G(1)-specific Cdk2 and Cdk4 complexes were downregulated in cells expressing Bop1Delta, whereas levels of the Cdk inhibitors p21 and p27 were concomitantly increased. The cells also displayed lack of hyperphosphorylation of retinoblastoma protein (pRb) and decreased expression of cyclin A, indicating their inability to progress through the restriction point. Inactivation of functional p53 abrogated this Bop1Delta-induced cell cycle arrest but did not restore normal rRNA processing. These findings show that deficiencies in ribosome synthesis can be uncoupled from cell cycle arrest and reveal a new role for the p53 pathway as a mediator of the signaling link between ribosome biogenesis and the cell cycle. We propose that aberrant rRNA processing and/or ribosome biogenesis may cause "nucleolar stress," leading to cell cycle arrest in a p53-dependent manner.  相似文献   

3.
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein 10) encodes an essential putative RNA helicase that is required for accurate ribosome biogenesis. Genetic depletion of Dbp10p results in a deficit in 60S ribosomal subunits and an accumulation of half-mer polysomes. Furthermore, pulse-chase analyses of pre-rRNA processing reveal a strong delay in the maturation of 27SB pre-rRNA intermediates into 25S rRNA and 7S pre-rRNA. Northern blot analyses indicate that this delay leads to higher steady-state levels of 27SB species and reduced steady-state levels of 7S pre-rRNA and 25S/5.8S mature rRNAs, thus explaining the final deficit in 60S subunit and the formation of half-mer polysomes. Consistent with a direct role in ribosome biogenesis, Dbp10p was found to be located predominantly in the nucleolus.  相似文献   

4.
The synthesis of adequate amounts of ribosomes is an essential task for the cell. It is therefore not surprising that regulatory circuits exist to organize the synthesis of ribosomal components. It has been shown that defect in ribosome biogenesis (ribosomal stress) induces apoptosis or cell cycle arrest through activation of the tumor suppressor p53. This mechanism is thought to be implicated in the pathophysiology of a group of genetic diseases such as Diamond Blackfan Anemia which are called ribosomopathies. We have identified an additional response to ribosomal stress that includes the activation of eukaryotic translation elongation factor 2 kinase with a consequent inhibition of translation elongation. This leads to a translational reprogramming in the cell that involves the structurally defined group of messengers called terminal oligopyrimidine (TOP) mRNAs which encode ribosomal proteins and translation factors. In fact, while general protein synthesis is decreased by the impairment of elongation, TOP mRNAs are recruited on polysomes causing a relative increase in the synthesis of TOP mRNA-encoded proteins compared to other proteins. Therefore, in response to ribosomal stress, there is a change in the translation pattern of the cell which may help restore a sufficient level of ribosomes.  相似文献   

5.
HeLa cells were synchronized with a double thymidine block. Ribosomal subunits, monomers and polyribosomes have been quantitatively analysed at hourly intervals, during interphase, and every 15 min, during mitosis. This analysis was performed on linear 7-47% sucrose gradients. From the beginning of G1 up to the end of S phase, a certain equilibrium among ribosomal subunits, monomers and polyribosomes is maintained, while from the time of entering G2 to M the translation machinery appears to be mobilized in the sense of polysome formation. Under these conditions, the amount of polysomes per cell during the mitotic cycle is expressed by a bi-phasic pattern showing pre- and post-mitotic peaks with a falling-off during S. The G1 peak, meanwhile, is much lower than the G2 peak. The incorporation of [3H]leucine into nascent polypeptide chains on polysomes, as well as into bulk cell proteins and into nuclear and cytoplasmic proteins considered separately, is also represented by a bi-phasic curve which shows, however, a higher peak in G1 and a lower peak in G2, with two fallings-off during S and M, respectively. Since between the G1 and the G2 amino acid pools there are not strong differences of leucine concentration, the discrepancy between the amount of polysomes and the rate of labelling is discussed on the basis of the differences of polysome shape found at the different stages of the cycle. In young cells, in fact, there is an abundance of small polysomes, while in the old cell large polysomes predominate. It is suggested that, in the old cell, the rate of translation on large polysomes could be relatively lower or that among these heavy aggregates a given number of "frozen" polysomes could be present. The ribosome state is considered as a probable limiting-factor of translation, particularly in mitosis.  相似文献   

6.
The Drosophila gene, pixie, is an essential gene required for normal growth and translation. Pixie is the fly ortholog of human RLI, which was first identified as an RNase L inhibitor, and yeast Rli1p, which has recently been shown to play a role in translation initiation and ribosome biogenesis. These proteins are all soluble ATP-binding cassette proteins with two N-terminal iron-sulfur clusters. Here we demonstrate that Pixie can be isolated from cells in complex with eukaryotic translation initiation factor 3 and ribosomal proteins of the small subunit. In addition, our analysis of polysome profiles reveals that double-stranded RNA interference-mediated depletion of Pixie results in an increase in empty 80 S ribosomes and a corresponding decrease in polysomes. Thus Pixie is required for normal levels of translation initiation. We also find that Pixie associates with the 40 S subunit on sucrose density gradients in an ATP-dependent manner. Our observations are consistent with Pixie playing a catalytic role in the assembly of complexes required for translation initiation. Thus, the function of this soluble ATP-binding cassette domain protein family in translation initiation has been conserved from yeast through to higher eukaryotes.  相似文献   

7.
Ribosome synthesis involves the concomitance of pre-rRNA processing and ribosomal protein assembly. In eukaryotes, this is a complex process that requires the participation of specific sequences and structures within the pre-rRNAs, at least 200 trans-acting factors and the ribosomal proteins. There is little information on the function of individual 60S ribosomal proteins in ribosome synthesis. Herein, we have analysed the contribution of ribosomal protein L35 in ribosome biogenesis. In vivo depletion of L35 results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. Pulse-chase, northern hybridization and primer extension analyses show that processing of the 27SB to 7S pre-rRNAs is strongly delayed upon L35 depletion. Most likely as a consequence of this, release of pre-60S ribosomal particles from the nucleolus to the nucleoplasm is also blocked. Deletion of RPL35A leads to similar although less pronounced phenotypes. Moreover, we show that L35 assembles in the nucleolus and binds to early pre-60S ribosomal particles. Finally, flow cytometry analysis indicated that L35-depleted cells mildly delay the G1 phase of the cell cycle. We conclude that L35 assembly is a prerequisite for the efficient cleavage of the internal transcribed spacer 2 at site C2.  相似文献   

8.
QSR1 is a recently discovered, essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein. Thirty-one unique temperature-sensitive alleles of QSR1 were generated by regional codon randomization within a conserved 20-amino-acid sequence of the QSR1-encoded protein. The temperature-sensitive mutants arrest as viable, large, unbudded cells 24 to 48 h after a shift to 37 degrees C. Polysome and ribosomal subunit analysis by velocity gradient centrifugation of lysates from temperature-sensitive qsr1 mutants and from cells in which Qsr1p was depleted by down regulation of an inducible promoter revealed the presence of half-mer polysomes and a large pool of free 60S subunits that lack Qsr1p. In vitro subunit-joining assays and analysis of a mutant conditional for the synthesis of Qsr1p demonstrate that 60S subunits devoid of Qsr1p are unable to join with 40S subunits whereas 60S subunits that contain either wild-type or mutant forms of the protein are capable of subunit joining. The defective 60S subunits result from a reduced association of mutant Qsr1p with 60S subunits. These results indicate that Qsr1p is required for ribosomal subunit joining.  相似文献   

9.
Cells have a recurrent need for the correct assembly of protein-nucleic acid complexes. We have studied a yeast homolog of the smallest subunit of chromatin assembly factor 1 (CAF1), encoded by YMR131c and termed "RRB1". Unlike other yeast homologs, Msi1p, and Hat2p, Rrb1p is essential for cell viability. Impairment of Rrb1p function results in decreased levels of free 60S ribosomal subunits and the appearance of half-mer polysomes, suggesting its involvement in ribosome biogenesis. Using tandem affinity purification (TAP ) combined with mass spectrometry, we show that Rrb1p is associated with ribosomal protein L3. A fraction of Rrb1p is also found in a protein-precursor rRNA complex containing at least ten other early-assembling ribosomal proteins. We propose that Rrb1p is required for proper assembly of preribosomal particles during early ribosome biogenesis, presumably by targeting L3 onto the 35S precursor rRNA. This action may resemble the mechanism by which CAF1 assembles histones H3/H4 onto newly replicated DNA.  相似文献   

10.
11.
The SAL4 gene of the yeast Saccharomyces cerevisiae encodes a novel translation factor (Sal4p) involved in maintaining translational fidelity. Using a polyclonal antibody raised against a Sal4p-beta-galactosidase fusion protein, Sal4p was shown to be almost exclusively associated with the ribosomal fraction. Even when the ribosomes were treated with 0.8 M KCl, only low levels of Sal4p were detected in the post-ribosomal supernatant, suggesting a very strong affinity between Sal4p and the ribosome. Analysis of the distribution of Sal4p in the ribosomal population revealed that it was principally associated with 40S subunits, monosomes and polysomes. Incubation in high salt concentrations (0.8 M KCl) suggested that the affinity of Sal4p for the 40S subunit was lower than that for monosomes or polysomes. The Sal4p:ribosome association was only maintained when ribosomes were prepared in the presence of the translation elongation inhibitor cycloheximide; in uninhibited cells much lower levels of Sal4p were detectable in the 'run-off' polysomes. In view of these data, and given the stoichiometry of Sal4p to individual ribosomal proteins (estimated at less than 1:20), we suggest that Sal4p plays an ancillary role in translation termination.  相似文献   

12.
Ribosomal proteins play an important role in p53 activation in response to nucleolar stress. Multiple ribosomal proteins, including L5, L11, L23, and S7, have been shown to bind to and inhibit MDM2, leading to p53 activation. However, it is not clear whether ribosomal protein regulation of MDM2 is specific to some, but not all ribosomal proteins. Here we show that L29 and L30, two ribosomal proteins from the 60 S ribosomal subunit, do not bind to MDM2 and do not inhibit MDM2-mediated p53 suppression, indicating that the ribosomal protein regulation of the MDM2-p53 feedback loop is specific. Interestingly, direct perturbation of the 60 S ribosomal biogenesis by knocking down either L29 or L30 drastically induced the level and activity of p53, leading to p53-depedent cell cycle arrest. This p53 activation was drastically inhibited by knockdown of L11 or L5. Consistently, knockdown of L29 or L30 enhanced the interaction of MDM2 with L11 and L5 and markedly inhibited MDM2-mediated p53 ubiquitination, suggesting that direct perturbation of 60 S ribosomal biogenesis activates p53 via L11- and L5-mediated MDM2 suppression. Mechanistically, knockdown of L30 or L29 significantly increased the NEDDylation and nuclear retention of L11. Knocking down endogenous NEDD8 suppressed p53 activation induced by knockdown of L30. These results demonstrate that NEDDylation of L11 plays a critical role in mediating p53 activation in response to perturbation of ribosomal biogenesis.  相似文献   

13.
In this paper the essential GTPase YlqF is shown to participate in the biogenesis of the 50S ribosomal subunit in Bacillus subtilis. Cells depleted of YlqF displayed gene expression profiles and nucleoid morphologies that were consistent with a function for YlqF in translation. In addition, YlqF is evolutionarily linked to two eukaryotic GTPases, Nog2p and Nug1p, that are involved in the biogenesis and the nuclear export of the 60S ribosomal subunit. Analysis of ribosomes from cells depleted of YlqF demonstrated that the formation of 70S ribosomes was greatly reduced and the large subunit sedimented at 45S. Cells grown with varying depleted levels of YlqF, yielding doubling times ranging from 38 min to 150 min, all displayed the 45S intermediate. Purified YlqF-His(6) protein associates with the 45S intermediate, but not the mature 50S subunit in vitro. Analysis of proteins from the 45S intermediate indicated that ribosomal protein L16, which is added late during in vitro Escherichia coli 50S ribosome biogenesis, was missing from the 45S intermediate. These results support a model in which YlqF participates in the formation of active 70S ribosomes in the cell by functioning in a late step of 50S subunit biogenesis. Based on these results we propose to rename the ylqF gene rbgA (ribosome biogenesis GTPase A).  相似文献   

14.
The origin recognition complex (ORC) is involved in formation of prereplicative complexes (pre-RCs) on replication origins in the G1 phase. At the G1/S transition, elevated cyclin E-CDK2 activity triggers 1DNA replication to enter S phase. The CDK cycle works as an engine that drives progression of cell cycle events by successive activation of different types of cyclin-CDK. However, how the CDK cycle is coordinated with replication initiation remains elusive. Here we report that acute depletion of ORC2 by RNA interference (RNAi) arrests cells with low cyclin E-CDK2 activity. This result suggests that loss of a replication initiation protein prevents progression of the CDK cycle in G1. p27 and p21 proteins accumulate following ORC2 RNAi and are required for the CDK2 inhibition. Restoration of CDK activity by co-depletion of p27 and p21 allows many ORC2-depleted cells to enter S phase and go on to mitosis. However, in some cells the release of the CDK2 block caused catastrophic events like apoptosis. Therefore, the CDK2 inhibition observed following ORC2 RNAi seems to protect cells from premature S phase entry and crisis in DNA replication. These results demonstrate an unexpected role of ORC2 in CDK2 activation, a linkage that could be important for maintaining genomic stability.  相似文献   

15.
Kap123p is a yeast beta-karyopherin that imports ribosomal proteins into the nucleus prior to their assembly into preribosomal particles. Surprisingly, Kap123p is not essential for growth, under normal conditions. To further explore the role of Kap123p in nucleocytoplasmic transport and ribosome biogenesis, we performed a synthetic fitness screen designed to identify genes that interact with KAP123. Through this analysis we have identified three other karyopherins, Pse1p/Kap121p, Sxm1p/Kap108p, and Nmd5p/Kap119p. We propose that, in the absence of Kap123p, these karyopherins are able to supplant Kap123p's role in import. In addition to the karyopherins, we identified Rai1p, a protein previously implicated in rRNA processing. Rai1p is also not essential, but deletion of the RAI1 gene is deleterious to cell growth and causes defects in rRNA processing, which leads to an imbalance of the 60S/40S ratio and the accumulation of halfmers, 40S subunits assembled on polysomes that are unable to form functional ribosomes. Rai1p localizes predominantly to the nucleus, where it physically interacts with Rat1p and pre-60S ribosomal subunits. Analysis of the rai1/kap123 double mutant strain suggests that the observed genetic interaction results from an inability to efficiently export pre-60S subunits from the nucleus, which arises from a combination of compromised Kap123p-mediated nuclear import of the essential 60S ribosomal subunit export factor, Nmd3p, and a DeltaRAI1-induced decrease in the overall biogenesis efficiency.  相似文献   

16.
Sda1 is an essential protein required for cell cycle progression in Saccharomyces cerevisiae. Here, we show that the sda1-1 mutation causes a defect in the formation and nuclear export of 60S ribosomal subunits. Moreover, the sda1-1, but also other mutants defective in ribosome biogenesis (e.g., rix1-1 and tif6Delta), exhibit a G1 arrest, which could be the consequence of impaired ribosome biogenesis. Interestingly, additional deletion of the non-essential Swe1 kinase, the homolog of S. pombe Wee1, causes a pronounced delay in entering a new cell cycle in sda1-1, rix1-1 and tif6Delta cells, when shifted back from restrictive to permissive conditions. However, such a prolonged delay is independent of the Tyr19 phosphorylation in Cdc28. Moreover, the lack of Swe1 causes delay in budding and DNA replication in cells released from the G1 arrest due to the block of protein synthesis. Our data suggest that Swe1 is required for timely entry into cell cycle after a G1 arrest caused by impairment in pre-60S biogenesis and in protein synthesis. Therefore we propose that Swe1, which is required for coordination of cell growth and cell division in G2/M, also has a role in the beginning of the cell cycle.  相似文献   

17.
18.
Sda1 is an essential protein required for cell cycle progression in Saccharomyces cerevisiae. Here, we show that the sda1-1 mutation causes a defect in the formation and nuclear export of 60S ribosomal subunits. Moreover, the sda1-1, but also other mutants defective in ribosome biogenesis (e.g., rix1-1 and tif6D), exhibit a G1 arrest, which could be the consequence of impaired ribosome biogenesis. Interestingly, additional deletion of the non-essential Swe1 kinase, the homolog of S. pombe Wee1, causes a pronounced delay in entering a new cell cycle in sda1-1, rix1-1 and tif6D cells, when shifted back from restrictive to permissive conditions. However, such a prolonged delay is independent of the Tyr19 phosphorylation in Cdc28. Moreover, the lack of Swe1 causes delay in budding and DNA replication in cells released from the G1 arrest due to the block of protein synthesis. Our data suggest that Swe1 is required for timely entry into cell cycle after a G1 arrest caused by impairment in pre-60S biogenesis and in protein synthesis. Therefore we propose that Swe1, which is required for coordination of cell growth and cell division in G2/M, also has a role in the beginning of the cell cycle.  相似文献   

19.
Yu Liu  Amy Chang 《Genetics》2009,181(3):907-915
Pma1-10 is a mutant plasma membrane ATPase defective at the restrictive temperature in stability at the cell surface. At 37°, Pma1-10 is ubiquitinated and internalized from the plasma membrane for degradation in the vacuole. YVH1, encoding a tyrosine phosphatase, is a mutant suppressor of pma1-10; in the absence of Yvh1, Pma1-10 remains stable at the plasma membrane, thereby permitting cells to grow. The RING finger domain of Yvh1, but not its phosphatase domain, is required for removal of mutant Pma1-10 from the plasma membrane. Yvh1 is a novel ribosome assembly factor: in yvh1Δ cells, free 60S and 80S ribosomal subunits are decreased, free 40S subunits are increased, and half-mer polysomes are accumulated. Pma1-10 is also stabilized by deletion of 60S ribosomal proteins Rpl19a and Rpl35a. We propose that changes in ribosome biogenesis caused by loss of Yvh1 or specific ribosomal proteins have effects on the plasma membrane, perhaps by producing specific translational changes.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号