首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a well-characterized barley mapping population (BCD 47 × Baronesse) to determine if barley stripe rust (BSR) resistance quantitative trait loci (QTL) mapped in Mexico and the USA were effective against a reported new race in Peru. Essentially the same resistance QTL were detected using data from each of the three environments, indicating that these resistance alleles are effective against the spectrum of naturally occurring races at these sites. In addition to the mapping population, we evaluated a germplasm array consisting of lines with different numbers of mapped BSR resistance alleles. A higher BSR disease severity on CI10587, which has a single qualitative resistance gene, in Peru versus Mexico suggests there are differences in pathogen virulence between the two locations. Confirmation of a new race in Peru will require characterization using a standard set of differentials, an experiment that is underway. The highest levels of resistance in Peru were observed when the qualitative resistance gene was pyramided with quantitative resistance alleles. We also used the mapping population to locate QTL conferring resistance to barley leaf rust and barley powdery mildew. For mildew, we identified resistance QTL under field conditions in Peru that are distinct from the Mla resistance that we mapped using specific isolates under controlled conditions. These results demonstrate the long-term utility of a reference mapping population and a well-characterized germplasm array for locating and validating genes conferring quantitative and qualitative resistance to multiple pathogens.  相似文献   

2.
The objective of this study was to map new resistance genes against powdery mildew (Blumeria graminis f. sp. hordei L.), leaf rust (Puccinia hordei L.) and scald [Rhynchosporium secalis (Oud.) J. Davis] in the advanced backcross doubled haploid (BC2DH) population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). Using field data of disease severity recorded in eight environments under natural infestation and genotype data of 98 SSR loci, we detected nine QTL for powdery mildew, six QTL for leaf rust resistance and three QTL for scald resistance. The presence of the exotic QTL alleles reduced disease symptoms by a maximum of 51.5, 37.6 and 16.5% for powdery mildew, leaf rust and scald, respectively. Some of the detected QTL may correspond to previously identified qualitative (i.e. Mla) and to quantitative resistance genes. Others may be newly identified resistance genes. For the majority of resistance QTL (61.0%) the wild barley contributed the favourable allele demonstrating the usefulness of wild barley in the quest for resistant cultivars.  相似文献   

3.
The identification and location of sources of genetic resistance to plant diseases are important contributions to the development of resistant varieties. The combination of different sources and types of resistance in the same genotype should assist in the development of durably resistant varieties. Using a doubled haploid (DH), mapping population of barley, we mapped a qualitative resistance gene (Rpsx) to barley stripe rust in the accession CI10587 (PI 243183) to the long arm of chromosome 1(7H). We combined the Rpsx gene, through a series of crosses, with three mapped and validated barley stripe rust resistance QTL alleles located on chromosomes 4(4H) (QTL4), 5(1H) (QTL5), and 7(5H) (QTL7). Three different barley DH populations were developed from these crosses, two combining Rpsx with QTL4 and QTL7, and the third combining Rpsx with QTL5. Disease severity testing in four environments and QTL mapping analyses confirmed the effects and locations of Rpsx, QTL4, and QTL5, thereby validating the original estimates of QTL location and effect. QTL alleles on chromosomes 4(4H) and 5(1H) were effective in decreasing disease severity in the absence of the resistance allele at Rpsx. Quantitative resistance effects were mainly additive, although magnitude interactions were detected. Our results indicate that combining qualitative and quantitative resistance in the same genotype is feasible. However, the durability of such resistance pyramids will require challenge from virulent isolates, which currently are not reported in North America.Communicated by J.W. SnapeOregon Agricultural Experiment Station paper No. 11953  相似文献   

4.
Selective genotyping of one or both phenotypic extremes of a population can be used to detect linkage between markers and quantitative trait loci (QTL) in situations in which full-population genotyping is too costly or not feasible, or where the objective is to rapidly screen large numbers of potential donors for useful alleles with large effects. Data may be subjected to 'trait-based' analysis, in which marker allele frequencies are compared between classes of progeny defined based on trait values, or to 'marker-based' analysis, in which trait means are compared between progeny classes defined based on marker genotypes. Here, bidirectional and unidirectional selective genotyping were simulated, using population sizes and selection intensities relevant to cereal breeding. Control of Type I error was usually adequate with marker-based analysis of variance or trait-based testing using the normal approximation of the binomial distribution. Bidirectional selective genotyping was more powerful than unidirectional. Trait-based analysis and marker-based analysis of variance were about equally powerful. With genotyping of the best 30 out of 500 lines (6%), a QTL explaining 15% of the phenotypic variance could be detected with a power of 0.8 when tests were conducted at a marker 10 cM from the QTL. With bidirectional selective genotyping, QTL with smaller effects and (or) QTL farther from the nearest marker could be detected. Similar QTL detection approaches were applied to data from a population of 436 recombinant inbred rice lines segregating for a large-effect QTL affecting grain yield under drought stress. That QTL was reliably detected by genotyping as few as 20 selected lines (4.5%). In experimental populations, selective genotyping can reduce costs of QTL detection, allowing larger numbers of potential donors to be screened for useful alleles with effects across different backgrounds. In plant breeding programs, selective genotyping can make it possible to detect QTL using even a limited number of progeny that have been retained after selection.  相似文献   

5.
Crown rust, caused by Puccinia coronata f. sp. lolii, is one of the most important diseases of temperate forage grasses, such as ryegrasses (Lolium spp.), affecting yield and nutritional quality. Therefore, resistance to crown rust is a major goal in ryegrass breeding programmes. In a two-way pseudo-testcross population consisting of 306 Lolium multiflorum individuals, multisite field evaluations as well as alternative methods based on artificial inoculation with natural inoculate in controlled environments were used to identify QTLs controlling resistance to crown rust. Disease scores obtained from glasshouse and leaf segment test (LST) evaluations were highly correlated with scores from a multisite field assessment (r = 0.66 and 0.79, P < 0.01, respectively) and thus confirmed suitability of these methods for crown rust investigations. Moreover, QTL mapping based on a linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed similar results across different phenotyping methods. Two major QTLs were consistently detected on linkage group (LG) 1 and LG 2, explaining up to 56% of total phenotypic variance (V p). Nevertheless, differences between position and magnitude of QTLs were observed among individual field locations and suggested the existence of specific local pathogen populations. The present study not only compared QTL results among crown rust evaluation methods and environments, but also identified molecular markers closely linked to previously undescribed QTLs for crown rust resistance in Italian ryegrass with the potential to be applied in marker-assisted forage crop breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The objective of the present study was to identify favourable exotic Quantitative Trait Locus (QTL) alleles for the improvement of agronomic traits in the BC2DH population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). QTLs were detected as a marker main effect and/or a marker × environment interaction effect (M × E) in a three-factorial ANOVA. Using field data of up to eight environments and genotype data of 98 SSR loci, we detected 86 QTLs for nine agronomic traits. At 60 QTLs the marker main effect, at five QTLs the M × E interaction effect, and at 21 QTLs both the effects were significant. The majority of the M × E interaction effects were due to changes in magnitude and are, therefore, still valuable for marker assisted selection across environments. The exotic alleles improved performance in 31 (36.0%) of 86 QTLs detected for agronomic traits. The exotic alleles had favourable effects on all analysed quantitative traits. These favourable exotic alleles were detected, in particular on the short arm of chromosome 2H and the long arm of chromosome 4H. The exotic allele on 4HL, for example, improved yield by 7.1%. Furthermore, the presence of the exotic allele on 2HS increased the yield component traits ears per m2 and thousand grain weight by 16.4% and 3.2%, respectively. The present study, hence, demonstrated that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits.  相似文献   

7.
High-temperature adult-plant (HTAP) resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat (Triticum aestivum L.). This study identified quantitative trait loci (QTL) conferring HTAP resistance to stripe rust in a population consisting of 169 F8:10 recombinant inbred lines (RILs) derived from a cross between a susceptible cultivar Rio Blanco and a resistant germplasm IDO444. HTAP resistance was evaluated for both disease severity and infection type under natural infection over two years at two locations. The genetic linkage maps had an average density of 6.7 cM per marker across the genome and were constructed using 484 markers including 96 wheat microsatellite (SSR), 632 Diversity Arrays Technology (DArT) polymorphisms, two sequence-tagged-site (STS) from semi-dwarf genes Rht1 and Rht2, and two markers for low molecular-weight glutenin gene subunits. QTL analysis detected a total of eight QTL significantly associated with HTAP resistance to stripe rust with two on chromosome 2B, two on 3B and one on each of 1A, 4A, 4B and 5B. QTL on chromosomes 2B and 4A were the major loci derived from IDO444 and explained up to 47 and 42% of the phenotypic variation for disease severity and infection type, respectively. The remaining five QTL accounted for 7–10% of the trait variation. Of these minor QTL, the resistant alleles at the two QTL QYrrb.ui-3B.1 and QYrrb.ui-4B derived from Rio Blanco and reduced infection type only, while the resistant alleles at the other three QTL, QYrid.ui-1A, QYrid.ui-3B.2 and QYrid.ui-5B, all derived from IDO444 and reduced either infection type or disease severity. Markers linked to 2B and 4A QTL should be useful for selection of HTAP resistance to stripe rust.  相似文献   

8.
Adult plant resistance to stripe (yellow) rust in the wheat cultivar Kariega has previously been ascribed to a major quantitative trait locus (QTL) on each of chromosomes 2B and 7D, along with a number of minor QTL. We have extended both the size of the cv. Kariega × cv. Avocet S mapping population, and the marker coverage within it, by assembling a set of Diversity Array Technology (DArT) markers. This has allowed for the analysis of the genetic basis of the adult plant and seedling resistances to stripe, leaf and stem rust present in the two mapping population parents. The stripe rust reactions of the segregating material were assessed in both field (three scoring dates) and greenhouse experiments. The chromosome 2B QTL became more important than the Lr34/Yr18 complex on chromosome 7D as the plants aged. As the infection progressed, the two QTL explained an increasing proportion of the variance for percentage leaf area infected. The cv. Kariega allele at the minor chromosome 4A QTL had a consistent effect on the severity of stripe rust infection and the overall plant reaction at the earlier scoring dates, but lost importance as the disease progressed. Several rust resistances were detected using an improved greenhouse-based test.  相似文献   

9.
 Genome-analysis tools are useful for dissecting complex phenotypes and manipulating determinants of these phenotypes in breeding programs. Quantitative trait locus (QTL)-analysis tools were used to map QTLs conferring adult plant resistance to stripe rust (caused by Puccinia striiformis f.sp. hordei) in barley. The resistance QTLs were introgressed into a genetic background unrelated to the mapping population with one cycle of marker-assisted backcrossing. Doubled-haploid lines were derived from selected backcross lines, phenotyped for stripe-rust resistance, and genotyped with an array of molecular markers. The resistance QTLs that were introgressed were significant determinants of resistance in the new genetic background. Additional resistance QTLs were also detected. The susceptible parent contributed resistance alleles at two of these new QTLs. We hypothesize that favorable alleles were fixed at these new QTLs in the original mapping population. Genetic background may, therefore, have an important role in QTL-transfer experiments. A breeding system is described that integrates single-copy and multiplex markers with confirmation of the target phenotype in doubled-haploid lines phenotyped in field tests. This approach may be useful for simultaneously producing agronomically useful germplasm and contributing to an understanding of quantitatively inherited traits. Received: 6 May 1997 / Accepted: 1 September 1997  相似文献   

10.
Atienza SG  Jafary H  Niks RE 《Planta》2004,220(1):71-79
Nonhost resistance is the most common type of resistance in plants. Understanding the factors that make plants susceptible or resistant may help to achieve durably effective resistance in crop plants. Screening of 109 barley (Hordeum vulgare L.) accessions in the seedling stage indicated that barley is a complete nonhost to most of the heterologous rust fungi studied, while it showed an intermediate status with respect to Puccinia triticina, P. hordei-murini, P. hordei-secalini, P. graminis f. sp. lolii and P. coronata ff. spp. avenae and holci. Accessions that were susceptible to a heterologous rust in the seedling stage were much more or completely resistant at adult plant stage. Differential interaction between barley accessions and heterologous rust fungi was found, suggesting the existence of rust-species-specific resistance. In particular, many landrace accessions from Ethiopia and Asia, and naked-seeded accessions, tended to be susceptible to several heterologous rusts, suggesting that some resistance genes in barley are effective against more than one heterologous rust fungal species. Some barley accessions had race-specific resistance against P. hordei-murini. We accumulated genes for susceptibility to P. triticina and P. hordei-murini in two genotypes called SusPtrit and SusPmur, respectively. In the seedling stage, these accessions were as susceptible as the host species to the target rusts. They also showed unusual susceptibility to other heterologous rusts. These two lines are a valuable asset to further experimental work on the genetics of resistance to heterologous rust fungi.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1319-1Abbreviations ff. spp Formae speciales - RIL Recombinant inbred line - DC Double cross - DC-S Progeny produced by selfing of double-cross plants  相似文献   

11.
Selective genotyping of individuals from the two tails of the phenotypic distribution of a population provides a cost efficient alternative to analysis of the entire population for genetic mapping. Past applications of this approach have been confounded by the small size of entire and tail populations, and insufficient marker density, which result in a high probability of false positives in the detection of quantitative trait loci (QTL). We studied the effect of these factors on the power of QTL detection by simulation of mapping experiments using population sizes of up to 3,000 individuals and tail population sizes of various proportions, and marker densities up to one marker per centiMorgan using complex genetic models including QTL linkage and epistasis. The results indicate that QTL mapping based on selective genotyping is more powerful than simple interval mapping but less powerful than inclusive composite interval mapping. Selective genotyping can be used, along with pooled DNA analysis, to replace genotyping the entire population, for mapping QTL with relatively small effects, as well as linked and interacting QTL. Using diverse germplasm including all available genetics and breeding materials, it is theoretically possible to develop an “all-in-one plate” approach where one 384-well plate could be designed to map almost all agronomic traits of importance in a crop species. Selective genotyping can also be used for genomewide association mapping where it can be integrated with selective phenotyping approaches. We also propose a breeding-to-genetics approach, which starts with identification of extreme phenotypes from segregating populations generated from multiple parental lines and is followed by rapid discovery of individual genes and combinations of gene effects together with simultaneous manipulation in breeding programs.  相似文献   

12.
Malting quality is genetically determined by the complex interaction of numerous traits which are expressed prior to and, in particular, during the malting process. Here, we applied the advanced backcross quantitative trait locus (AB-QTL) strategy (Tanksley and Nelson, Theor Appl Genet 92:191–203, 1996), to detect QTLs for malting quality traits and, in addition, to identify favourable exotic alleles for the improvement of malting quality. For this, the BC2DH population S42 was generated from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). A QTL analysis in S42 for seven malting parameters measured in two different environments yielded 48 QTLs. The exotic genotype improved the trait performance at 18 (37.5%) of 48 QTLs. These favourable exotic alleles were detected, in particular, on the chromosome arms 3HL, 4HS, 4HL and 6HL. The exotic allele on 4HL, for example, improved α-amylase activity by 16.3%, fermentability by 0.8% and reduced raw protein by 2.4%. On chromosome 6HL, the exotic allele increased α-amylase by 16.0%, fermentability by 1.3%, friability by 7.3% and reduced viscosity by 2.9%. Favourable transgressive segregation, i.e. S42 lines exhibiting significantly better performance than the recurrent parent Scarlett, was recorded for four traits. For α-amylase, fermentability, fine-grind extract and VZ45 20, 16, 2 and 26 S42 lines, respectively, surpassed the recurrent parent Scarlett. The present study hence demonstrates that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve malting quality traits.  相似文献   

13.
Pyramiding and dissecting disease resistance QTL to barley stripe rust   总被引:3,自引:0,他引:3  
Quantitative resistance (QR) to disease is usually more durable than qualitative resistance, but its genetic basis is not well understood. We used the barley/barley stripe rust pathosystem as a model for the characterization of the QR phenotype and associated genomic regions. As an intermediate step in the preparation of near-isogenic lines representing individual QTL alleles and combinations of QTL alleles in a homogeneous genetic background, we developed a set of QTL introgression lines in a susceptible background. These intermediate barley near-isogenic (i-BISON) lines represent disease resistance QTL combined in one-, two-, and three-way combinations in a susceptible background. We measured four components of disease resistance on the i-BISON lines: latent period, infection efficiency, lesion size, and pustule density. The greatest differences between the target QTL introgressions and the susceptible controls were for the latter three traits. On average, however, the QTL introgressions also had longer latent periods than the susceptible parent (Baronesse). There were significant differences in the magnitudes of effects of different QTL alleles. The 4H QTL allele had the largest effect, followed by the alleles on 1H and 5H. Pyramiding multiple QTL alleles led to higher levels of resistance in terms of all components of QR except latent period.  相似文献   

14.
Midstalk rot, caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in sunflower (Helianthus annuus L.). Objectives of this study were to: (1) estimate the number, genomic positions and genetic effects of quantitative trait loci (QTL) for resistance to midstalk rot in line TUB-5-3234, derived from an interspecific cross; (2) determine congruency of QTL between this line and other sources of resistance; and (3) make inferences about the efficiency of selective genotyping (SG) in detecting QTL conferring midstalk rot resistance in sunflower. Phenotypic data for three resistance (stem lesion, leaf lesion and speed of fungal growth) and two morphological (leaf length and leaf length with petiole) traits were obtained from 434 F3 families from cross CM625 (susceptible) × TUB-5-3234 (resistant) under artificial infection in field experiments across two environments. The SG was applied by choosing the 60 most resistant and the 60 most susceptible F3 families for stem lesion. For genotyping of the respective F2 plants, 78 simple sequence repeat markers were used. Genotypic variances were highly significant for all traits. Heritabilities and genotypic correlations between resistance traits were moderate to high. Three to four putative QTL were detected for each resistance trait explaining between 40.8% and 72.7% of the genotypic variance ( ). Two QTL for stem lesion showed large genetic effects and corroborated earlier findings from the cross NDBLOSsel (resistant) × CM625 (susceptible). Our results suggest that SG can be efficiently used for QTL detection and the analysis of congruency for resistance genes across populations.  相似文献   

15.
Using AFLP markers, a linkage map was constructed based on a recombinant inbred population of barley derived from a cross between a leaf rust susceptible line, L94, and a partially resistant line, 116-5. The constructed map showed a similar marker distribution pattern as the L94 × Vada map. However, it contained more large gaps, and for some chromosome regions no markers were identified. These regions are most likely derived from L94 because 116-5 was selected from the progeny of a cross of L94 × cv. Cebada Capa. Five QTLs for partial resistance to isolate 1.2.1. were mapped on the L94 × 116-5 map. Three QTLs were effective in the seedling stage, jointly contributing 42% to the total phenotypic variance. Three QTLs were effective in the adult plant stage, collectively explaining 35% of the phenotypic variance. Evidence for two additional linked minor-effect QTLs effective in the adult plant stage was also uncovered. The major-effect QTL, Rphq3, was the only one that was effective in both developmental stages. Moreover, Rphq3, was also identified in the L94 × Vada population, being effective to two rust isolates. The other QTLs were detected in either of the two populations, providing evidence for the existence of many loci for partial resistance to leaf rust on the barley genome. To date, 13 QTLs for partial resistance have been mapped, therefore, a strategy of accumulating many resistance genes in a single cultivar, resulting in a high level of partial resistance, is feasible.  相似文献   

16.
Fusarium head blight (FHB) resistance was evaluated in five recombinant inbred (RI) populations. The RI populations consisted of top-cross progeny derived from a diallel set of crosses. Each of five two-row barley lines differing in response to FHB were crossed with ‘Harbin 2-row’. FHB severity was scored on an 11-point scale, where resistant = 0 and susceptible = 10, based on the ‘cut-spike test’. Disease data were obtained for each population for 2 or 3 years. Linkage maps comprised of expressed sequence tag (EST) markers were developed for each population and used for quantitative trait locus (QTL) detection. Thirty two QTLs were detected using all data sets (individual populations and years). Thirteen QTLs were detected using averages across years; 10 of these were consistent across the individual year and average data sets. These QTLs clustered at 14 regions, with clusters on all chromosomes. At 11 of these clusters, Harbin 2-row contributed FHB resistance alleles. No QTLs were detected near the row type (vrs1) locus in any of the five RI populations, suggesting that the FHB resistance QTL in this region reported in two-row × six-row crosses may be pleiotropic effect of vrs1. QTL were coincident with the flowering type locus (cly1/Cly2) on chromosome 2H in every population. Some QTL × QTL interactions were significant, but these were smaller than QTL main effects. Considering the pleiotropic effect of spike morphology on FHB resistance, future FHB resistance mapping efforts in barley should focus on cross combinations in which alleles at vrs1 are not segregating. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Stripe rust (Puccinia striiformis W.) causes a range of disease symptoms in hexaploid wheat. We have utilized the AB-QTL (advanced backcross quantitative trait locus) strategy for the genetic dissection of complex disease resistance against stripe rust. An advanced backcross population designated Z86 was made by crossing the winter wheat cultivar Zentos (Triticum aestivum L.) and the primary (exotic) synthetic wheat accession Syn86L (T. turgidum ssp. dicoccoides?×?Aegilops tauschii). The population Z86, containing 150 BC2F3 lines, was inoculated with the stripe rust isolate R108E141. The disease symptoms were subjected to QTL analysis by using a genetic map based on 118 simple sequence repeat markers. This analysis revealed six QTL effects that were located on chromosomes 1B, 2B, 6B, 7B, 1D and 4D. At four loci, the exotic alleles were associated to increased resistance against stripe rust. The strongest effect, QYrs.Z86-1B, was detected on the short arm of chromosome 1B. Here, the introgression of the exotic allele resulted in 86% enhancement of resistance which explained 37.2% of the genetic variance (R 2). The second favorable effect of an exotic allele was detected on chromosome 1D at QYrs.Z86-1D, which accounted for 72% increase in resistance and explained 18.4% of the R 2. Each of the exotic allele at QTL QYrs.Z86-6B and QYrs.Z86-7B accounted for around 60% enhancement of resistance against stripe rust. At QTL QYrs.Z86-2B and QYrs.Z86-4D, the relative performance of the exotic alleles was inferior due to the pre-eminence of the elite alleles which ranged from 67 to 72%. In addition, QTL analysis revealed four QTL by marker interaction effects. In most cases, the interaction between the elite and exotic alleles brought up resistance in the mixed background of BC2F3 lines. The data presented here provide valuable new genetic resources to be used for stripe rust resistance breeding as well as to isolate new alleles of exotic origin.  相似文献   

18.
Wollaroi, an Australian durum wheat cultivar, produced a low stripe rust response and the alternative parent Bansi was highly susceptible. The Wollaroi/Bansi recombinant inbred line (RIL) population was phenotyped across three consecutive crop seasons. A genetic map of the Wollaroi/Bansi RIL population comprising 799 markers (diversity arrays technology and simple sequence repeat markers) was used to determine the genomic location of stripe rust resistance genes carried by the cultivar Wollaroi. Composite interval mapping detected three consistent quantitative trait loci (QTL) in chromosomes 2A, 3B and 5B. These QTL were named QYr.sun-2A, QYr.sun-3B and QYr.sun-5B. Another QTL, QYr.sun-1B, was detected only in the 2009 crop season. QTL in chromosomes 1B, 2A, 3B and 5B explained on average 6, 9.3, 26.7 and 8.7 %, respectively, of the variation in stripe rust response. All QTL were contributed by Wollaroi. RILs carrying these QTL singly produced intermediate stripe rust severities ranging from 46.2 to 55.7 %, whereas RILs with all four QTL produced the lowest disease severity (34.3 %). The consistently low stripe rust response of Wollaroi for 20 years demonstrated the durability of the resistance loci involved. The QTL combination detected in this study is being transferred to common wheat.  相似文献   

19.
Leaf rust and stripe rust are important diseases of wheat world-wide and deployment of cultivars with genetic resistance is an effective and environmentally sound control method. The use of minor, additive genes conferring adult plant resistance (APR) has been shown to provide resistance that is durable. The wheat cultivar ‘Pastor’ originated from the CIMMYT breeding program that focuses on minor gene-based APR to both diseases by selecting and advancing generations alternately under leaf rust and stripe rust pressures. As a consequence, Pastor has good resistance to both rusts and was used as the resistant parent to develop a mapping population by crossing with the susceptible ‘Avocet’. All 148 F5 recombinant inbred lines were evaluated under artificially inoculated epidemic environments for leaf rust (3 environments) and stripe rust (4 environments, 2 of which represent two evaluation dates in final year due to the late build-up of a new race virulent to Yr31) in Mexico. Map construction and QTL analysis were completed with 223 polymorphic markers on 84 randomly selected lines in the population. Pastor contributed Yr31, a moderately effective race-specific gene for stripe rust resistance, which was overcome during this study, and this was clearly shown in the statistical analysis. Linked or pleiotropic chromosomal regions contributing to resistance against both pathogens included Lr46/Yr29 on 1BL, the Yr31 region on 2BS, and additional minor genes on 5A, 6B and 7BL. Other minor genes for leaf rust resistance were located on 1B, 2A and 2D and for stripe rust on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL. The 1AL, 1BS and 7AL QTLs are in regions that were not identified previously as having QTLs for stripe rust resistance. The development of uniform and severe epidemics facilitated excellent phenotyping, and when combined with multi-environment analysis, resulted in the relatively large number of QTLs identified in this study.  相似文献   

20.
Root system size (RSS) was measured in 12 diverse barley genotypes and 157 double-haploid lines (DHs), using electric capacitance. The parents of the DHs, Derkado and B83-12/21/5, carry different semi-dwarfing genes, sdw1 and ari-e.GP, respectively. Estimates of RSS were taken in the field thrice during plant development: stem elongation (RSS1), heading (RSS2) and grain filling (RSS3). The 12 barley genotypes were assessed over 3 years and at two or three locations each year; the DH mapping population was assessed at two locations in 2002. Among the 12 barley genotypes, those with the semi-dwarf genes had greater RSS values in all 3 years (28.9, 24.6 and 15.0% in years 1, 2 and 3, respectively) compared to non-semi-dwarf controls. The DH population showed transgressive segregation on both sides of the parent means, indicating polygenic control of RSS. Quantitative trait loci (QTLs) for RSS were found on five of the seven chromosomes: 1H, 3H, 4H, 5H and 7H and these were compared with previously mapped agronomic traits. The TotalRSS QTL on 3H was associated with sdw1 and QTLs for height, plant yield and plant weight. The RSS3 QTL on 5H was associated with ari-e.GP and QTLs for height, plant yield, plant weight, harvest index and tiller number. The RSS3 QTL on 7H was also associated with a TotalRSS QTL and QTLs for plant weight and harvest index. Other RSS QTLs were not associated with any other trait studied. RSS is considered to be a polygenic trait linked to important traits, in particular to yield. The study highlights the effects of semi-dwarfing genes and discusses the potential for breeding for root traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号