首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During recent years signals leading to the early stages of nodulation of legumes by rhizobia have been identified. Plant flavonoids induce rhizobialnod genes that are essential for nodulation. Most of thenod gene products are involved in the biosynthesis of lipo-oligosaccharide molecules. The commonnodABC genes are minimally required for the synthesis of all lipo-oligosaccharides. Host-specificnod gene products in a givenRhizobium species are responsible for synthesis or addition of various moieties to those basic lipo-oligosaccharide molecules. For example, inR. leguminosarum, thenodFEL operon is involved in the production of lipo-oligosaccharide signals that mediate host specificity. AnodFE-determined highly unsaturated fatty acid (trans-2, trans-4, trans-6, cis-11-octadecatetraenoic acid) is essential for inducing nodule meristems and pre-infection thread structures on the host plantVicia sativa. Lipo-oligosaccharides also trigger autoregulation of nodulation in pea and, if applied in excessive amounts to a legume, can prevent nodulation and thereby might play a role in competition. During our studies on the biosynthesis of lipo-oligosaccharides, we discovered that, besides the lipo-oligosaccharides, other metabolites are synthesizedde novo after induction of thenod genes. These novel metabolites appeared to be phospholipids, containing either one of the three fatty acids which are made by the action of NodFE inR. leguminosarum.  相似文献   

2.
Several bacterial strains were isolated from the surface of root nodules of Astragalus sinicus cv. Japan (known as renge-sou in Japanese), a green manure legume that grows in winter and which is used in rice fields to fertilize the soil in both Japan and China. These bacterial strains stimulated the nodulation on renge-sou induced by strains of Rhizobium huakuii bv. renge. From a taxonomic characterization of the isolates, the strains were found to belong to the species Enterobacter cloacae. It was found that strains of E. cloacae increased the number and weight of nodules and the yield of the host plant when these strains were inoculated with a strain of R. huakuii bv. renge both in a test-tube nodulation assay and in soil from a rice field. E. cloacae influenced nodulation at an appropriate ratio of cells of two bacterial strains. The timing of the inoculation of the two strains onto the host plant was also important. The effect of E. cloacae on the nodulation of renge-sou may be due to bacterial products such as exopolysaccharides.  相似文献   

3.
Recent advances in our understanding of the molecular genetics of legume-Rhizobium symbioses have indicated that relatively few bacterial genes are required for nodulation. While some of these genes are functionally similar and shared among microsymbionts nodulating genetically diverse legumes, others appear to encode host-specific nodulation (hsn) functions which allow for nodulation of plants within a given legume genus. More recently, genotype-specific nodulation (GSN) determinants have been identified in R. leguminosarum bv. viceae strain TOM and in B. japonicum strain USDA 110. GSN determinants refer to those bacterial sequences that allow for nodulation of specific plant genotypes within a given legume species. In contrast to the avr loci of several plant pathogens, rhizobia host-range determinants (hsn and GSN) have been shown to positively affect nodulation. That is, the introduction of exogenous hsn and GSN loci extends host-range. Since GSN loci have been reported to interact with single host plant alleles, it suggests that gene-for-gene interactions occur in rhizobial-legume symbioses and contribute to nodulation specificity at the host genotype level.  相似文献   

4.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

5.
The rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (= SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis. Spot profiles were compared between the two conditions and selected spots were excised and identified by mass spectrometry. Forty-seven proteins were significantly induced by genistein, including several hypothetical proteins, the cytoplasmic flagellar component FliG, periplasmic ABC transporters, a protein related to biosynthesis of exopolysaccharides (ExoN), and proteins involved in redox-state maintenance. Noteworthy was the induction of the PhyR-σEcfG regulon, recently demonstrated to be involved in the symbiotic efficiency of, and general stress response in B. japonicum. Our results confirm that the role of flavonoids, such as genistein, can go far beyond the expression of nodulation-related proteins in B. japonicum.  相似文献   

6.
Summary A microscopic assessment is presented of the comparative infection capacity of wild-type and hybrid strains ofRhizobium leguminosarum bv.viciae withR. l. bv.trifolii strain ANU 843 on white clover seedlings. TheR. l. bv.viciae hybrid strains contained defined DNA segments coding for different combinations ofR. l. bv.trifolii host-specific nodulation genes. White clover plants were examined over a 72 h period to assessRhizobium infectivity, the morphological changes in root hair growth; colonisation ability of rhizobia; infection thread initiation and the ability to induce cortical cell division.R. l. bv.viciae strain 300 induced root hair curling more slowly than strain ANU 843 or any of the hybrid strain 300 bacteria, and when curling had taken place, there was poorer colonization by strain 300 within the folded hair cell, no evidence of infection thread formation and only limited cortical cell division 72 h after inoculation. The addition of the host-specific nodulation genes ofR. l. bv.trifolii to strain 300 was necessary to induce infection threads and establish a normal pattern of nodulation of the roots of white clovers.  相似文献   

7.
Summary Five crystal protein genes have been isolated from DNA of Bacillus thuringiensis entomocidus 60.5, an isolate selected for its high toxicity against Spodoptera littoralis and Spodoptera exigua. Two of these genes belong to a family of well-described crystal protein genes. The toxic properties of the corresponding proteins are similar to those of isolate kurstaki HD1. The other three genes belong to gene families not described before. One of these genes codes for a protein product exhibiting a high degree of specificity towards Spodoptera species, explaining the high toxicity of isolate entomocidus 60.5 against these species. This gene product is much less toxic against larvae of Heliothis virescens and Pieris brassicae. Its coding sequence is separated from a supposed fourth crystal protein gene by a stretch of DNA of 3 kb. The crystal protein encoded by the fifth gene is mainly active against P. brassicae. Homology between the crystal protein genes is limited to the central region of the coding sequences, including the proteolytic cleavage site, except for the first two genes between which homology is extensive.  相似文献   

8.
Sixteen bacterial strains were isolated from root nodules of Vavilovia formosa plants originated from the North Ossetian State Natural Reserve (Caucasus, Russia). Phylogenetic analysis of these strains was performed using partial 16S rRNA gene and internally transcribed spacer (ITS) sequences. The results showed that the isolates belong to three families of root nodule bacteria. Twelve of them were related to the genus Rhizobium (family Rhizobiaceae) but four strains can be most probably identified as Phyllobacterium-related (family Phyllobacteriaceae), Bosea- and Rhodopseudomonas-related (family Bradyrhizobiaceae). Amplified fragment length polymorphism clustering was congruent with ITS phylogeny but displayed more variability for Rhizobium isolates, which formed a single group at the level of 30 % similarity. We expect that the isolates obtained can belong to new taxa at genus, species or subspecies levels. The results of PCR amplification of the nodulation genes nodC and nodX showed their presence in all Rhizobium isolates and one Rhodopseudomonas-related isolate. The nodC gene sequences of V. formosa isolates were closely related to those of the species Rhizobium leguminosarum bv. viciae but formed separate clusters and did not intermingle with any reference strains. The presence of the nodX gene, which is necessary for nodulation of Afghan peas (Pisum sativum L.) originated from the Middle East, allows the speculation that these wild-type pea cultivars may be the closest existing relatives of V. formosa. Thus, the studies of genetic diversity and symbiotic genes of V. formosa microsymbionts provide the primary information about their phylogeny and contribute to the conservation of this relict leguminous species.  相似文献   

9.
10.
The group A streptococcal emm-like genes, which encode the cell-surface M and M-like proteins, are divided into distinct mrp, emm and enn subdivisions and are clustered together in a region of the chromosome called the vir regulon. In order to understand the mechanisms involved in the evolution of emm-like genes, a 180bp fragment of the 5 variable region of the enn gene was characterized in 31 strains for which emm sequences and multilocus enzyme electrophoretic profiles have been previously determined. The results demonstrate that nucleotide polymorphisms at the enn locus are generated predominantly by point mutations and short deletions or insertions, and that variation among enn and emm genes has arisen by similar mechanisms. However, diversity at the enn locus is restricted in comparison to the emm locus. Moreover, there is strong evidence for intragenic recombination at the enn locus and the pattern of distribution of emm and enn alleles among strains suggests that these genes may be independently acquired by horizontal transfer and recombination from distinct donor strains, thereby generating a mosaic structure for the vir regulon. The results add to a growing body of evidence that horizontal gene transfer has played a major role in the evolution of Streptococcus pyogenes vir regulons.  相似文献   

11.
Genes involved in nodulation competitiveness (tfx) were inserted by marker exchange into the genome of the effective strain Rhizobium leguminosarum bv. trifolii TA1. Isogenic strains of TA1 were constructed which differed only in their ability to produce trifolitoxin, an antirhizobial peptide. Trifolitoxin production by the ineffective strain R. leguminosarum bv. trifolii T24 limited nodulation of clover roots by trifolitoxin-sensitive strains of R. leguminosarum bv. trifolii. The trifolitoxin-producing exconjugant TA1::10-15 was very competitive for nodulation on clover roots when coinoculated with a trifolitoxin-sensitive reference strain. The nonproducing exconjugant TA1::12-10 was not competitive for nodule occupancy when coinoculated with the reference strain. Tetracycline sensitivity and Southern analysis confirmed the loss of vector DNA in the exconjugants. Trifolitoxin production by TA1::10-15 was stable in the absence of selection pressure. Transfer of tfx to TA1 did not affect nodule number or nitrogenase activity. These experiments represent the first stable genetic transfer of genes involved in nodulation competitiveness to a symbiotically effective Rhizobium strain.  相似文献   

12.
Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.  相似文献   

13.
Tropical forests have a high diversity of plant species; are they associated with a correspondingly rich microbial flora? We addressed this question by examining the symbiotic rhizobium bacteria that nodulate a diverse pool of forest legume species in Brazil. The 44 strains studied had been isolated from 29 legume tree species representing 13 tribes including all three subfamilies of the Leguminosae, and were chosen to represent major groups from a larger sample that had previously been characterized by SDS–PAGE of total proteins. Partial 16S rRNA gene sequence was determined, corresponding to positions 44–303 in the Escherichia coli sequence. Fifteen sequences were found, including six novel ones. However, all but one of them could be assigned to a genus because they grouped closely with sequences from previously described rhizobial species. Fast-growing strains had sequences similar to Rhizobium spp., Sinorhizobium spp. or Mesorhizobium spp., while the slow-growing strains had sequences similar to Bradyrhizobium spp. One strain with an intermediate growth rate had a unique sequence which indicated that the strain might belong to the genus Azorhizobium. Although the strains showed a variety of sequences, it was surprising that these strains isolated from taxonomically very diverse host plants in previously unexplored environments were mostly very similar to strains described previously, largely from agricultural systems.  相似文献   

14.
DNA sequencing of the nodIJ region from Rhizobium leguminosarum biovar trifolii revealed the nodT gene immediately downstream of nodJ. DNA hybridizations using a nodT-specific probe showed that nodT is present in several R. leguminosarum strains. Interestingly, a flavonoid-inducible nodT gene homologue in R. leguminosarum bv. viciae is not in the nodABCIJ operon but is located downstream of nodMN. The sequence of the nodT gene from bv. viciae was determined and a comparison of the predicted amino-acid sequences of the two nodT genes shows them to be conserved; the predicted protein sequences appear to have a potential transit sequence typical of outer-membrane proteins. Mutations affecting nodT in either biovar had no observed effect on nodulation of the legumes tested.  相似文献   

15.
A new approach involving the comparative analysis of proteins of crude cell lysate pellets from isogenic strains of Saccharomyces cerevisiae distinguished by their prion composition permitted us to identify a large group of prion-associated proteins in yeast cells. 35 proteins whose aggregation state depends on prion content have been identified by 2D-electrophoresis followed by the MALDI analysis of a recipient [psi ] strain and of [PSI +] cytoductant. Approximately half of these proteins belong to functional groups of chaperones and enzymes involved in glucose metabolism. Other proteins are involved in translation, stress response and protein degradation. The data obtained are compared with the results of other groups who used different approaches to detect proteins involved in prion aggregates.  相似文献   

16.
Only some strains of Rhizobium leguminosarum biovar viciae can efficiently nodulate varieties of peas such as cv. Afghanistan, which carry a recessive allele that blocks efficient nodulation by most western isolates of R. I. viciae. One strain (TOM) which can nodulate cv. Afghanistan peas has a gene (nodX) that is required to overcome the nodulation resistance. Strain TOM makes significantly lower amounts of lipo-oligosaccharide nodulation factors than other strains of R. I. viciae. and this effect appears to be due to lower levels of nod gene induction. These nodulation factors are similar to those from other R. I. viciae. strains in that they consist of an oligomer of four or five β1-4-linked N-acetylglucosamine residues in which the terminal non-reducing glucosamine carries an O-acetyl group and a C18:4 or C18:1N-acyl group. However, one of the nodulation factors made by strain TOM differs from the factors made by other strains of R. I. viciae. in that it carries an O-acetyl group on the C-6 of the reducing N-acetylglucosamine residue. This acetylation is NodX-dependent and the pentameric nodulation factor is acetylated on the reducing N-acetylglucosamine residue whereas the tetrameric nodulation factor is not. Although the nodL gene product is also an O-acetyl transferase (it O-acetylates the C-6 of the terminal non-reducing glucosamine), there is very little similarity between the amino acid sequences of these two acetyl transferases.  相似文献   

17.
Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.  相似文献   

18.
A 1.2kb DNA fragment was cloned from Synechococcus sp. PCC7942, which is able phenotypicalty to complement a phoRcreC Escherichia coli mutant for the expression of alkaline phosphatase. A 2.5kb DNA fragment encompassing the putative gene was then cloned and its complete nucleotide sequence determined. Nucleotide sequencing revealed that the intact gene encodes a protein of 46389 Da, and that the deduced amino acid sequence shows a high degree of homology to those of the bacterial sensory kinase family. In the determined nucleotide sequence, another gene was adjacently located, which encodes a protein of 29012Da. This protein shows a high degree of homology to those of the response regulator family. Thus, we succeeded in the cloning of a pair of genes encoding the sensory kinase and response regulator, respectively, in a cyanobacterium. Mutant strains that lack these genes were constructed, and demonstrated to be defective in their ability to produce alkaline phosphatase and some inducible proteins in response to phosphate-limitation in the medium. These results imply that the gene products identified in this study are probably involved, either directly or indirectly, in the signal-transduction mechanism underlying regulation of the phosphate regulon in Synechococcus sp. PCC7942. Hence, the genes encoding the sensory kinase and response regulator were designated as sphS and sphR, respectively (S ynechococcusph osphate regulon). The SphS protein was demonstrated in vitro to undergo phosphorylation in the presence of ATP.  相似文献   

19.
Using radioactive acetate as a precursor, it was shown that the common nodABC genes of Rhizobium and Bradyrhizobium strains are involved in the production of one or more metabolites that are excreted into the growth medium. A rapid thin-layer chromatography (TLC) system has been developed to separate these so-called Nod metabolites that can then be visualized by autoradiography. Different patterns of Nod metabolites were observed in the tested strains of the cross-inoculation groups of R. leguminosarum bv. viceae, R. l. bv. trifolii, R. meliloti, and B. japonicum. Only Nod metabolites of R. meliloti became labeled when radioactive sulphate was present in the medium. The role of the other nodulation genes of R. l. bv. viceae in the production of the detected Nod metabolites was tested in further detail. In addition to the common nodABC genes, the nodFE and nodL genes are involved in the production of Nod metabolites. In contrast, the chromosomal background did not influence the number of detected Nod metabolites or their mobilities on TLC plates. Nod metabolites could also be produced and excreted in Escherichia coli cells in which the appropriate nodulation genes were expressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号