首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptomyces coelicolor 1A and Pseudomonas citronellolis were able to degrade synthetic high-molecular-weight poly(cis-1,4-isoprene) and vulcanized natural rubber. Growth on the polymers was poor but significantly greater than that of the nondegrading strain Streptomyces lividans 1326 (control). Measurement of the molecular weight distribution of the polymer before and after degradation showed a time-dependent increase in low-molecular-weight polymer molecules for S. coelicolor 1A and P. citronellolis, whereas the molecular weight distribution for the control (S. lividans 1326) remained almost constant. Three degradation products were isolated from the culture fluid of S. coelicolor 1A grown on vulcanized rubber and were identified as (6Z)-2,6-dimethyl-10-oxo-undec-6-enoic acid, (5Z)-6-methyl-undec-5-ene-2,9-dione, and (5Z,9Z)-6,10-dimethyl-pentadec-5,9-diene-2,13-dione. An oxidative pathway from poly(cis-1,4-isoprene) to methyl-branched diketones is proposed. It includes (i) oxidation of an aldehyde intermediate to a carboxylic acid, (ii) one cycle of β-oxidation, (iii) oxidation of the conjugated double bond resulting in a β-keto acid, and (iv) decarboxylation.  相似文献   

2.
Streptomyces sp. strain K30 was isolated from soil next to a city high way in Münster (Germany) according to its ability to degrade natural and synthetic poly(cis-1,4-isoprene) rubber and to form clear zones on natural rubber latex agar plates. The clear zone forming phenotype was used to clone the responsible gene by phenotypic complementation of a clear zone negative mutant. An open reading frame (lcp) of 1,191 bp was identified, which was preceded by a putative signal sequence and restored the capability to form clear zones on natural rubber latex in the mutant. The putative translation product exhibited strong homologies (50% aa identity) to a putative secreted protein from Streptomyces coelicolor strain A3(2), another clear zone forming strain. Heterologous expression of lcp of Streptomyces sp. strain K30 in Streptomyces lividans strain TK23 enabled the latter to form clear zones on latex-overlay agar plates and to accumulate a degradation product of about 12 kDa containing aldehyde groups. Two ORFs putatively encoding a heterodimeric molybdenum hydroxylase (oxiAB) were identified downstream of lcp in Streptomyces sp. strain K30 strain which exerted a positive effect on clear zone formation and enabled the strain to oxidize the resulting aldehydes. Heterologous expression of a fragment harboring lcp plus oxiAB in S. lividans TK23 resulted in accumulation of aldehydes only in the presence of 10 mM tungstate. Determination of protein content during cultivation on poly(cis-1,4-isoprene) revealed an increase of the cellular protein, and gel permeation chromatography analysis indicated a shift of the molecular weight distribution of the rubber to lower values in the transgenic S. lividans strains and in the wild type, thus confirming utilization and degradation of rubber. Therefore, for the first time, genes responsible for clear zone formation on natural rubber latex and synthetic cis-1,4-polyisoprene degradation in Gram-positive bacteria were identified and characterized.  相似文献   

3.
4.
The enrichment and isolation of thermophilic bacteria capable of rubber [poly(cis-1,4-isoprene)] degradation revealed eight different strains exhibiting both currently known strategies used by rubber-degrading mesophilic bacteria. Taxonomic characterization of these isolates by 16S rRNA gene sequence analysis demonstrated closest relationships to Actinomadura nitritigenes, Nocardia farcinica, and Thermomonospora curvata. While strains related to N. farcinica exhibited adhesive growth as described for mycolic acid-containing actinomycetes belonging to the genus Gordonia, strains related to A. nitritigenes and T. curvata formed translucent halos on natural rubber latex agar as described for several mycelium-forming actinomycetes. For all strains, optimum growth rates were observed at 50 degrees C. The capability of rubber degradation was confirmed by mineralization experiments and by gel permeation chromatography (GPC). Intermediates resulting from early degradation steps were purified by preparative GPC, and their analysis by infrared spectroscopy revealed the occurrence of carbonyl carbon atoms. Staining with Schiff's reagent also revealed the presence of aldehyde groups in the intermediates. Bifunctional isoprenoid species terminated with a keto and aldehyde function were found by matrix-assisted laser desorption ionization-time-of-flight and electrospray ionization mass spectrometry analyses. Evidence was obtained that biodegradation of poly(cis-1,4-isoprene) is initiated by endocleavage, rather than by exocleavage. A gene (lcp) coding for a protein with high homology to Lcp (latex-clearing protein) from Streptomyces sp. strain K30 was identified in Nocardia farcinica E1. Streptomyces lividans TK23 expressing this Lcp homologue was able to cleave synthetic poly(cis-1,4-isoprene), confirming its involvement in initial polymer cleavage.  相似文献   

5.
Abstract Amino acid sequences of protease inhibitors ( Streptomyces subtilisin inhibitor-like proteins) widely distributed in Streptomyces were compared to clarify the taxonomic status of three strains of Streptomyces spp., S. coelicolor A3(2), S. lividans 66 and S. coelicolor Müller, which are closely related by conventional taxonomical procedures. The sequence comparison indicated that S. coelicolor A3(2) is distinct from the type strain S. coelicolor Müller, but belongs to the same taxon as S. lividans 66.  相似文献   

6.
7.
During growth with maltotriose or amylose, Streptomyces lividans and Streptomyces coelicolor A3(2) synthesize a maltodextrin uptake system with highest specificity for maltotriose. The transport activity is absent in mutants of S. coelicolor A3(2) lacking a functional MalE binding protein. Cloning and sequencing data suggest that the mal operon of S. coelicolor A3(2) corresponds to the one of S. lividans and that the deduced S. lividans Reg1 amino acid sequence is identical to that of MalR from S. coelicolor A3(2). It can be concluded that both strains have the same ABC transport system for maltodextrins. The S. lividans malR was cloned in Escherichia coli in frame with six histidine-encoding codons. The resulting, purified 6HisMalR(SI) was shown to bind to two motifs within the S. lividans malR-malE intergenic region and to dissociate in the presence of maltopentaose.  相似文献   

8.
An extracellular protein with strong absorption at 406 nm was purified from cell-free culture fluid of latex-grown Xanthomonas sp. strain 35Y. This protein was identical to the gene product of a recently characterized gene cloned from Xanthomonas sp., as revealed by determination of m/z values and sequencing of selected isolated peptides obtained after trypsin fingerprint analysis. The purified protein degraded both natural rubber latex and chemosynthetic poly(cis-1,4-isoprene) in vitro by oxidative cleavage of the double bonds of poly(cis-1,4-isoprene). 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (m/z 236) was identified and unequivocally characterized as the major cleavage product, and there was a homologous series of minor metabolites that differed from the major degradation product only in the number of repetitive isoprene units between terminal functions, CHO-CH2--and--H2-COCH3. An in vitro enzyme assay for oxidative rubber degradation was developed based on high-performance liquid chromatography analysis and spectroscopic detection of product carbonyl functions after derivatization with dinitrophenylhydrazone. Enzymatic cleavage of rubber by the purified protein was strictly dependent on the presence of oxygen; it did not require addition of any soluble cofactors or metal ions and was optimal around pH 7.0 at 40 degrees C. Carbon monoxide and cyanide inhibited the reaction; addition of catalase had no effect, and peroxidase activity could not be detected. The purified protein was specific for natural rubber latex and chemosynthetic poly(cis-1,4-isoprene). Analysis of the amino acid sequence deduced from the cloned gene (roxA [rubber oxygenase]) revealed the presence of two heme-binding motifs (CXXCH) for covalent attachment of heme to the protein. Spectroscopic analysis confirmed the presence of heme, and approximately 2 mol of heme per mol of RoxA was found.  相似文献   

9.
Oxidative cleavage of poly(cis-1,4-isoprene) by rubber oxygenase RoxA purified from Xanthomonas sp. was investigated in the presence of different combinations of (16)O(2), (18)O(2), H(2)(16)O, and H(2)(18)O. 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD; m/z 236) was the main cleavage product in the absence of (18)O-compounds. Incorporation of one (18)O atom in ODTD was found if the cleavage reaction was performed in the presence of (18)O(2) and H(2)(16)O. Incubation of poly(cis-1,4-isoprene) (with RoxA) or of isolated unlabeled ODTD (without RoxA) with H(2)(18)O in the presence of (16)O(2) indicated that the carbonyl oxygen atoms of ODTD significantly exchanged with oxygen atoms derived from water. The isotope exchange was avoided by simultaneous enzymatic reduction of both carbonyl functions of ODTD to the corresponding dialcohol (12-hydroxy-4,8-dimethyl-trideca-4,8-diene-1-ol (HDTD; m/z 240) during RoxA-mediated in vitro cleavage of poly(cis-1,4-isoprene). In the presence of (18)O(2), H(2)(16)O, and alcohol dehydrogenase/NADH, incorporation of two atoms of (18)O into the reduced metabolite HDTD was found (m/z 244), revealing that RoxA cleaves rubber by a dioxygenase mechanism. Based on the labeling results and the presence of two hemes in RoxA, a model of the enzymatic cleavage mechanism of poly(cis-1,4-isoprene) is proposed.  相似文献   

10.
11.
Rubber-degrading bacteria were screened for the production of clearing zones around their colonies on latex overlay agar plates. Novel three bacteria, Streptomyces sp. strain LCIC4, Actinoplanes sp. strain OR16, and Methylibium sp. strain NS21, were isolated. To the best of our knowledge, this is the first report on the isolation of a Gram-negative rubber-degrading bacterium other than γ-proteobacteria. Gel permeation chromatography analysis revealed that these strains degraded poly(cis-1,4-isoprene) to low-molecular-weight products. The occurrence of aldehyde groups in the degradation products by NS21 was suggested by staining with Schiff's reagent and 1H-nuclear magnetic resonance spectroscopy. The lcp gene of LCIC4, which showed 99% amino acid sequence identity with that of Streptomyces sp. strain K30, was cloned, and contained a putative twin-arginine motif at its N terminus. It is located next to oxiB, which is estimated to be responsible for oxidation of degradation intermediate of rubber in K30. Southern hybridization analysis using LCIC4 lcp probe revealed the presence of a lcp-homolog in OR16. These results suggest that the lcp-homologs are involved in rubber degradation in LCIC4 and OR16.  相似文献   

12.
Streptomyces hygroscopicus 10-22 harbors a conjugative, autonomously replicating linear plasmid pHZ6 of ca. 70 kb, which shows no obvious homology with chromosomal DNA and is temperature-sensitive for replication, being stable in the host at 28 degrees C but easily lost at 37 degrees C. On a lawn of the wild-type S. hygroscopicus 10-22 cured of pHZ6, pHZ6 elicit pocks. Temperature sensitivity seemed to be a unique property for pHZ6 among six linear plasmids tested, including the well-known linear plasmids SLP2 in Streptomyces lividans 1326 and SCP1 in Streptomyces coelicolor A3(2). The distinct identity of pHZ6 from previously identified pHZ1-pHZ5 was demonstrated by the profile of relevant plasmids in six well-defined strains originated from S. hygroscopicus 10-22.  相似文献   

13.
Streptomyces coelicolor produces four genetically and structurally distinct antibiotics in a growth-phase-dependent manner. S. coelicolor mutants globally deficient in antibiotic production (Abs(-) phenotype) have previously been isolated, and some of these were found to define the absB locus. In this study, we isolated absB-complementing DNA and show that it encodes the S. coelicolor homolog of RNase III (rnc). Several lines of evidence indicate that the absB mutant global defect in antibiotic synthesis is due to a deficiency in RNase III. In marker exchange experiments, the S. coelicolor rnc gene rescued absB mutants, restoring antibiotic production. Sequencing the DNA of absB mutants confirmed that the absB mutations lay in the rnc open reading frame. Constructed disruptions of rnc in both S. coelicolor 1501 and Streptomyces lividans 1326 caused an Abs(-) phenotype. An absB mutation caused accumulation of 30S rRNA precursors, as had previously been reported for E. coli rnc mutants. The absB gene is widely conserved in streptomycetes. We speculate on why an RNase III deficiency could globally affect the synthesis of antibiotics.  相似文献   

14.
The transposons Tn5, Tn10, Tn611, and Tn5096 were characterized regarding transposition in Gordonia polyisoprenivorans strain VH2. No insertional mutants were obtained employing Tn5 or Tn10. The thermosensitive plasmid pCG79 harboring Tn611 integrated into the chromosome of G. polyisoprenivorans; however, the insertional mutants were fairly unstable und reverted frequently to the wild-type phenotype. In contrast, various stable mutants were obtained employing Tn5096-mediated transposon mutagenesis. Auxotrophic mutants, mutants defective or deregulated in carotenoid biosynthesis, and mutants defective in utilization of rubber and/or highly branched isoprenoid hydrocarbons were obtained by integration of plasmid pMA5096 harboring Tn5096 as a whole into the genome. From about 25,000 isolated mutants, the insertion loci of pMA5096 were subsequently mapped in 20 independent mutants in genes which could be related to the above-mentioned metabolic pathways or to putative regulation proteins. Analyses of the genotypes of pMA5096-mediated mutants defective in biodegradation of poly(cis-1,4-isoprene) did not reveal homologues to recently identified genes coding for enzymes catalyzing the initial cleavage of poly(cis-1,4-isoprene). One rubber-negative mutant was disrupted in mcr, encoding an alpha-methylacyl-coenzyme A racemase. This mutant was defective in degradation of poly(cis-1,4-isoprene) and also of highly branched isoprenoid hydrocarbons.  相似文献   

15.

The actinomycete Gordonia polyisoprenivorans strain VH2 is well-known for its ability to efficiently degrade and catabolize natural rubber [poly(cis-1,4-isoprene)]. Recently, a pathway for the catabolism of rubber by strain VH2 was postulated based on genomic data and the analysis of mutants (Hiessl et al. in Appl Environ Microbiol 78:2874–2887, 2012). To further elucidate the degradation pathway of poly(cis-1,4-isoprene), 2-dimensional-polyacrylamide gel electrophoresis was performed. The analysis of the identified protein spots by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry confirmed the postulated intracellular pathway suggesting a degradation of rubber via β-oxidation. In addition, other valuable information on rubber catabolism of G. polyisoprenivorans strain VH2 (e.g. oxidative stress response) was provided. Identified proteins, which were more abundant in cells grown with rubber than in cells grown with propionate, implied a putative long-chain acyl-CoA-dehydrogenase, a 3-ketoacyl-CoA-thiolase, and an aldehyde dehydrogenase. The amino acid sequence of the latter showed a high similarity towards geranial dehydrogenases. The expression of the corresponding gene was upregulated > 10-fold under poly(cis-1,4-isoprene)-degrading conditions. The putative geranial dehydrogenase and a homolog were purified and used for enzyme assays. Deletion mutants for five aldehyde dehydrogenases were generated, and growth with poly(cis-1,4-isoprene) was investigated. While none of the mutants had an altered phenotype regarding growth with poly(cis-1,4-isoprene) as sole carbon and energy source, purified aldehyde dehydrogenases were able to catalyze the oxidation of oligoisoprene aldehydes indicating an involvement in rubber degradation.

  相似文献   

16.
17.
Streptomyces lividans DNA contains a modification which makes it susceptible to double-strand cleavage during electrophoresis in buffers contaminated with ferrous iron (which may be present in some batches of EDTA). The cleavage of the DNA is site-specific and the average fragment size resulting from limit digestion of total S. lividans DNA is about 6kb. DNA from Streptomyces coelicolor A3(2) and several other Streptomyces strains, and from E. coli, is not cleaved under the same conditions. A S. lividans mutant has been isolated which lacks the DNA modification. We suspect that many reports of "poor" preparations of S. lividans plasmids may be due to the above effect.  相似文献   

18.
The genes of Streptomyces coelicolor A3(2) encoding catalytic subunits (ClpP) and regulatory subunits (ClpX and ClpC) of the ATP-dependent protease family Clp were cloned, mapped and characterized. S. coelicolor contains at least two clpP genes, clpP1 and clpP2, located in tandem upstream from the clpX gene, and at least two unlinked clpC genes. Disruption of the clpP1 gene in S. lividans and S. coelicolor blocks differentiation at the substrate mycelium step. Overexpression of clpP1 and clpP2 accelerates aerial mycelium formation in S. lividans, S. albus and S. coelicolor. Overproduction of ClpX accelerates actinorhodin production in S. coelicolor and activates its production in S. lividans.  相似文献   

19.
Streptomyces griseus ATCC 10137, S. griseus IMRU 3570, S. griseus JI 2212, S. acrimycini JI 2236 and S. albus G sporulated abundantly in several liquid media after nutritional downshift. Spores formed in submerged cultures were viable and as thermoresistant as aerial spores. Scanning electron microscopy showed that submerged spores are morphologically similar to aerial spores. The sporulation of the Streptomyces strains tested in complex medium appeared to be triggered by phosphate nutritional downshift, induced by addition of Ca2+ to the medium. Spore-shaped bodies were formed by S. lividans JI 1326 and S. coelicolor JI 2280 when grown in complex medium supplemented with Ca2+ and proline. The thermoresistance of these spore-shaped bodies differed from that of aerial spores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号