首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Many viruses subvert the host ubiquitin-proteasome system to optimize their life cycle. We recently documented such a mechanism for the human immunodeficiency virus type 1 Vpr protein, which promotes cell cycle arrest by recruiting the DCAF1 adaptor of the Cul4A-DDB1 ubiquitin ligase, a finding now confirmed by several groups. Here we examined the impact of Cul4A-DDB1(DCAF1) on Vpr stability. We show that the Vpr(Q65R) mutant, which is defective in DCAF1 binding, undergoes proteasome-mediated degradation at a higher rate than wild-type Vpr. DCAF1 overexpression stabilizes wild-type Vpr and leads to its cytoplasmic accumulation, whereas it has no effect on the Vpr(Q65R) mutant. Conversely, small interfering RNA-mediated silencing of DCAF1 decreases the steady state amount of the viral protein. Stabilization by DCAF1, which is conserved by Vpr species from human immunodeficiency virus type 2 and the SIVmac strain, results in increased G(2) arrest and requires the presence of DDB1, indicating that it occurs through assembly of Vpr with a functional Cul4A-DDB1(DCAF1) complex. Furthermore, in human immunodeficiency virus type 1-infected cells, the Vpr protein, issued from the incoming viral particle, is destabilized under DCAF1 or DDB1 silencing. Together with our previous findings, our data suggest that Cul4A-DDB1(DCAF1) acts at a dual level by providing Vpr with the equipment for the degradation of specific host proteins and by counter-acting its proteasome targeting by another cellular E3 ubiquitin ligase. This protection mechanism may represent an efficient way to optimize the activity of Vpr molecules that are delivered by the incoming virus before neosynthesis takes place. Targeting the Vpr-DCAF1 interaction might therefore present therapeutic interest.  相似文献   

3.
D N Levy  Y Refaeli    D B Weiner 《Journal of virology》1995,69(2):1243-1252
The vpr gene product of human immunodeficiency virus (HIV) and simian immunodeficiency virus is a virion-associated regulatory protein that has been shown using vpr mutant viruses to increase virus replication, particularly in monocytes/macrophages. We have previously shown that vpr can directly inhibit cell proliferation and induce cell differentiation, events linked to the control of HIV replication, and also that the replication of a vpr mutant but not that of wild-type HIV type 1 (HIV-1) was compatible with cellular proliferation (D. N. Levy, L. S. Fernandes, W. V. Williams, and D. B. Weiner, Cell 72:541-550, 1993). Here we show that purified recombinant Vpr protein, in concentrations of < 100 pg/ml to 100 ng/ml, increases wild-type HIV-1 replication in newly infected transformed cell lines via a long-lasting increase in cellular permissiveness to HIV replication. The activity of extracellular Vpr protein could be completely inhibited by anti-Vpr antibodies. Extracellular Vpr also induced efficient HIV-1 replication in newly infected resting peripheral blood mononuclear cells. Extracellular Vpr transcomplemented a vpr mutant virus which was deficient in replication in promonocytic cells, restoring full replication competence. In addition, extracellular Vpr reactivated HIV-1 expression in five latently infected cell lines of T-cell, B-cell, and promonocytic origin which normally express very low levels of HIV RNA and protein, indicating an activation of translational or pretranslational events in the virus life cycle. Together, these results describe a novel pathway governing HIV replication and a potential target for the development of anti-HIV therapeutics.  相似文献   

4.
5.
Accessory protein Vpr of human immunodeficiency virus type 1 (HIV-1) arrests cell cycling at G(2)/M phase in human and simian cells. Recently, it has been shown that Vpr also causes cell cycle arrest in the fission yeast Schizosaccharomyces pombe, which shares the cell cycle regulatory mechanisms with higher eukaryotes including humans. In this study, in order to identify host cellular factors involved in Vpr-induced cell cycle arrest, the ability of Vpr to cause elongated cellular morphology (cdc phenotype) typical of G(2)/M cell cycle arrest in wild-type and various mutant strains of S. pombe was examined. Our results indicated that Vpr caused the cdc phenotype in wild-type S. pombe as well as in strains carrying mutations, such as the cdc2-3w, Deltacdc25, rad1-1, Deltachk1, Deltamik1, and Deltappa1 strains. However, other mutants, such as the cdc2-1w, Deltawee1, Deltappa2, and Deltarad24 strains, failed to show a distinct cdc phenotype in response to Vpr expression. Results of these genetic studies suggested that Wee1, Ppa2, and Rad24 might be required for induction of cell cycle arrest by HIV-1 Vpr. Cell proliferation was inhibited by Vpr expression in all of the strains examined including the ones that did not show the cdc phenotype. The results supported the previously suggested possibility that Vpr affects the cell cycle and cell proliferation through different pathways.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein has important functions in advancing HIV pathogenesis via several effects on the host cell. Vpr mediates nuclear import of the preintegration complex, induces host cell apoptosis, and inhibits cell cycle progression at G(2), which increases HIV gene expression. Some of Vpr's activities have been well described, but some functions, such as cell cycle arrest, are not yet completely characterized, although components of the ATR DNA damage repair pathway and the Cdc25C and Cdc2 cell cycle control mechanisms clearly play important roles. We investigated the mechanisms underlying Vpr-mediated cell cycle arrest by examining global cellular gene expression profiles in cell lines that inducibly express wild-type and mutant Vpr proteins. We found that Vpr expression is associated with the down-regulation of genes in the MEK2-ERK pathway and with decreased phosphorylation of the MEK2 effector protein ERK. Exogenous provision of excess MEK2 reverses the cell cycle arrest associated with Vpr, confirming the involvement of the MEK2-ERK pathway in Vpr-mediated cell cycle arrest. Vpr therefore appears to arrest the cell cycle at G(2)/M through two different mechanisms, the ATR mechanism and a newly described MEK2 mechanism. This redundancy suggests that Vpr-mediated cell cycle arrest is important for HIV replication and pathogenesis. Our findings additionally reinforce the idea that HIV can optimize the host cell environment for viral replication.  相似文献   

7.
Prior work has implicated viral protein R (Vpr) in the arrest of human immunodeficiency virus type 1 (HIV-1)-infected cells in the G2 phase of the cell cycle, associated with increased viral replication and host cell apoptosis. We and others have recently shown that virion infectivity factor (Vif ) also plays a role in the G2 arrest of HIV-1-infected cells. Here, we demonstrate that, paradoxically, at early time points postinfection, Vif expression blocks Vpr-mediated G2 arrest, while deletion of Vif from the HIV-1 genome leads to a marked increase in G2 arrest of infected CD4 T-cells. Consistent with this increased G2 arrest, T-cells infected with Vif-deleted HIV-1 express higher levels of Vpr protein than cells infected with wild-type virus. Further, expression of exogenous Vif inhibits the expression of Vpr, associated with a decrease in G2 arrest of both infected and transfected cells. Treatment with the proteasome inhibitor MG132 increases Vpr protein expression and G2 arrest in wild-type, but not Vif-deleted, NL4-3-infected cells, and in cells cotransfected with Vif and Vpr. In addition, Vpr coimmunoprecipitates with Vif in cotransfected cells in the presence of MG132. This suggests that inhibition of Vpr by Vif is mediated at least in part by proteasomal degradation, similar to Vif-induced degradation of APOBEC3G. Together, these data show that Vif mediates the degradation of Vpr and modulates Vpr-induced G2 arrest in HIV-1-infected T-cells.  相似文献   

8.
9.
The mechanism of CD4(+) T-cell depletion in human immunodeficiency virus type 1 (HIV-1)-infected individuals remains unknown, although mounting evidence suggests that direct viral cytopathicity contributes to this loss. The HIV-1 Vpr accessory protein causes cell death and arrests cells in the G(2)/M phase; however, the molecular mechanism underlying these properties is not clear. Mutation of hydrophobic residues on the surface of its third alpha-helix disrupted Vpr toxicity, G(2)/M arrest induction, nuclear localization, and self-association, implicating this region in multiple Vpr functions. Cytopathicity by virion-delivered mutant Vpr protein correlated with G(2)/M arrest induction but not nuclear localization or self-association. However, infection with whole virus encoding these Vpr mutants did not abrogate HIV-1-induced cell killing. Rather, mutant Vpr proteins that are impaired for G(2)/M block still prevented infected cell proliferation, and this property correlated with the death of infected cells. Chemical agents that inhibit infected cells from entering G(2)/M also did not reduce HIV-1 cytopathicity. Combined, these data implicate Vpr in HIV-1 killing through a mechanism involving inhibiting cell division but not necessarily in G(2)/M. Thus, the hydrophobic region of the third alpha-helix of Vpr is crucial for mediating G(2)/M arrest, nuclear localization, and self-association but dispensable for HIV-1 cytopathicity due to residual cell proliferation blockade mediated by a separate region of the protein.  相似文献   

10.
11.
12.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during infection, including induction of the cell cycle G2 arrest, and cell death in both human cells and the fission yeast Schizosaccharomyces pombe. We show that treament of exponential-phase wild-type Vpr-expressing S. pombe cells with a low, subinhibitory concentration (0.15 mmol/L) of hydrogen peroxide and 0.1 mmol/L thiamine significantly increased both cell proliferation and survival rates and decreased the number of elongated G2-arrested cells. Short-term, H2O2-induced adaptive stress increased the survival of the cells while acute stress conditions interrupted the Vpr-mediated death of the cells; however, no changes in cell length or cell phase were detected. The results suggest the importance of the oxidative status of the cells in Vpr-mediated processes. Our findings contribute to the development of a new approach via which to investigate the contribution of Vpr to HIV pathogenesis and to reduce the Vpr-mediated effects in HIV-infected patients.  相似文献   

13.
14.
15.
The presence of a leader peptide in picornaviruses is restricted to the Cardiovirus and Aphthovirus genera. However, the leader peptides of these two genera are structurally and functionally unrelated. The aphthovirus leader is a protease involved in viral polyprotein processing and host cell translation shutoff. The function of the cardiovirus leader peptide is still unknown. To gain an insight into the function of the cardiovirus leader peptide, a mengovirus leader peptide deletion mutant was constructed. The deletion mutant was able to grow at a reduced rate in baby hamster kidney cells (BHK-21). Mutant virus production in mouse fibroblasts (L929 cells), however, could be demonstrated only after inoculation of BHK-21 cells with the transfected L929 cells. Analysis of cellular and viral protein synthesis in mutant virus-infected cells showed a delayed inhibition of host cell protein synthesis and a reduced production of viral proteins. In a single-cycle infection, mutant virus produced only 1% of wild-type virus yield at 8 h postinfection. Host cell translation shutoff in L929 cells infected with mutant virus was restored by the addition of the kinase inhibitor 2-aminopurine. Mutant virus production in 2-aminopurine-treated L929 cells was increased to 60% of wild-type virus yield at 8 h postinfection. Our results suggest that the cardiovirus leader peptide is involved in the inhibition of host cell protein synthesis.  相似文献   

16.
17.
Cell cycle G2 arrest, nuclear localization, and cell death induced by human immunodeficiency virus type 1 Vpr were examined in fission yeast by using a panel of Vpr mutations that have been studied previously in human cells. The effects of the mutations on Vpr functions were highly similar between fission yeast and human cells. Consistent with mammalian cell studies, induction of cell cycle G2 arrest by Vpr was found to be independent of nuclear localization. In addition, G2 arrest was also shown to be independent of cell killing, which only occurred when the mutant Vpr localized to the nucleus. The C-terminal end of Vpr is crucial for G2 arrest, the N-terminal alpha-helix is important for nuclear localization, and a large part of the Vpr protein is responsible for cell killing. It is evident that the overall structure of Vpr is essential for these cellular effects, as N- and C-terminal deletions affected all three cellular functions. Furthermore, two single point mutations (H33R and H71R), both of which reside at the end of each alpha-helix, disrupted all three Vpr functions, indicating that these two mutations may have strong effects on the overall Vpr structure. The similarity of the mutant effects on Vpr function in fission yeast and human cells suggests that fission yeast can be used as a model system to evaluate these Vpr functions in naturally occurring viral isolates.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号