首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian brains contain relatively high amounts of common and uncommon sialylated N-glycan structures. Sialic acid linkages were identified for voltage-gated potassium channels, Kv3.1, 3.3, 3.4, 1.1, 1.2 and 1.4, by evaluating their electrophoretic migration patterns in adult rat brain membranes digested with various glycosidases. Additionally, their electrophoretic migration patterns were compared with those of NCAM (neural cell adhesion molecule), transferrin and the Kv3.1 protein heterologously expressed in B35 neuroblastoma cells. Metabolic labelling of the carbohydrates combined with glycosidase digestion reactions were utilized to show that the N-glycan of recombinant Kv3.1 protein was capped with an oligo/poly-sialyl unit. All three brain Kv3 glycoproteins, like NCAM, were terminated with alpha2,3-linked sialyl residues, as well as atypical alpha2,8-linked sialyl residues. Additionally, at least one of their antennae was terminated with an oligo/poly-sialyl unit, similar to recombinant Kv3.1 and NCAM. In contrast, brain Kv1 glycoproteins consisted of sialyl residues with alpha2,8-linkage, as well as sialyl residues linked to internal carbohydrate residues of the carbohydrate chains of the N-glycans. This type of linkage was also supported for Kv3 glycoproteins. To date, such a sialyl linkage has only been identified in gangliosides, not N-linked glycoproteins. We conclude that all six Kv channels (voltage-gated K+ channels) contribute to the alpha2,8-linked sialylated N-glycan pool in mammalian brain and furthermore that their N-glycan structures contain branched sialyl residues. Identification of these novel and unique sialylated N-glycan structures implicate a connection between potassium channel activity and atypical sialylated N-glycans in modulating and fine-tuning the excitable properties of neurons in the nervous system.  相似文献   

2.
The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type), partially glycosylated (N220Q and N229Q), and unglycosylated (N220Q/N229Q) Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.  相似文献   

3.
A single intraventricular injection of tetanus toxin produced a time-dependent elevation of serotonin levels in brain and spinal cord of adult rats. This tetanus toxin-induced increase was produced in areas of high density of serotonergic innervation, such as the hypothalamus, hippocampus, and spinal cord. Little or no effect was found in the thalamus, cerebellum, and frontal cortex, areas that are poorly innervated by serotonergic terminals. The responses of catecholamines (no change in dopamine level and generalized decrease in norepinephrine) pointed to a specific action of tetanus toxin on the serotonergic system. Stereotaxic injections of tetanus toxin in dorsal or magnus raphe nuclei did not have an evident effect on biogenic amine levels in the brain and spinal cord, respectively. Because direct stereotaxic injections of the toxin in the hypothalamus or hippocampus produced significant serotonin increases in both areas, it is proposed that tetanus toxin interacts with presynaptic targets to produce serotonin accumulation; this is probably due in part to an activation of tryptophan 5-hydroxylase.  相似文献   

4.
The sialic acid of complex N-glycans can be biochemically engineered by substituting the physiological precursor N-acetylmannosamine with non-natural N-acylmannosamines. The Kv3.1 glycoprotein, a neuronal voltage-gated potassium channel, contains sialic acid. Western blots of the Kv3.1 glycoprotein isolated from transfected B35 neuroblastoma cells incubated with N-acylmannosamines verified sialylated N-glycans attached to the Kv3.1 glycoprotein. Outward ionic currents of Kv3.1 transfected B35 cells treated with N-pentanoylmannosamine or N-propanoylmannosamine had slower activation and inactivation rates than those of untreated cells. Therefore, the N-acyl side chain of sialic acid is intimately connected with the activation and inactivation rates of this glycosylated potassium channel.  相似文献   

5.
Abstract: tele -Methylimidazoleacetic acid (t-MIAA), a major brain histamine metabolite, was measured in nine rat brain regions by a gas chromatography-mass spectrometric method that also measures the precursor amine, tele -methylhistamine (t-MH). The t-MIAA concentration of cerebellum, medulla-pons, midbrain, caudate nucleus, hypothalamus, frontal cortex, hippocampus, and thalamus varied 15-fold, hypothalamus showing the highest level (2.21 nmol/g) and cerebellum the lowest (0.15 nmol/ g). The concentrations of t-MIAA and t-MH were significantly correlated in all regions except midbrain, which had relatively more t-MIAA. Probenecid did not alter whole-brain t-MIAA levels. Treatment with pargyline, an inhibitor of monoamine oxidase, lowered the t-MIAA levels in all regions.  相似文献   

6.
Distribution of Cholecystokinin-Like Peptides in the Human Brain   总被引:3,自引:0,他引:3  
Abstract: The regional distribution of cholecystokinin-like immunoreactivity (CCK-LI) in postmortem human brain material has been investigated. CCK-LI was concentrated particularly in the forebrain (all cerebral cortical areas, amygdala, and hippocampus), with smaller amounts in the basal ganglia, hypothalamus, and periventricular grey. Lowest amounts of CCK-LI were found in the thalamus, cerebellum, and spinal cord.  相似文献   

7.
Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a dendritically polarized membrane glycoprotein expressed in tissues distinct from those expressing other ICAMs. Here, we determined the N-glycan structure of ICAM-5 purified from adult rat brain and compared it with that of other ICAMs. N-glycans were released by N-glycosidase F digestion and labeled with p-amino benzoic octylester (ABOE). ABOE-labeled glycans were analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. The N-glycans obtained from rat brain ICAM-5 consisted of approximately 85% neutral, 10.2% sialylated-only, 2.8% sulfated-only, and 1.2% sialylated and sulfated glycans. Compared with the N-glycan structures of human ICAM-1 expressed in CHO cells, HEK cells, or mouse myeloma cells and ICAM-3 isolated from human T-cells, rat brain ICAM-5 had less highly branched glycans, sialylated glycans, and N-acetyllactosamine structures. In contrast, high-mannose-type N-glycans and Lewis X were more commonly found in rat brain ICAM-5 than in human ICAM-1 expressed in CHO cells, HEK cells, or mouse myeloma cells and ICAM-3 isolated from human T-cells. In addition, sulfated glycans contained GlcNAc 6-O-sulfate on the non-reducing terminal side. Our data will be important for the elucidation of the roles of the N-glycans expressed in neural cells, including those present on ICAM-5.  相似文献   

8.
N-glycans play important roles in various pathophysiological processes and can be used as clinical diagnosis markers. However, plasma N-glycans change and their pathophysiological significance in the setting of hypercholesterolemia, a major risk factor for atherosclerosis, is unknown. Here, we collected plasma from both hypercholesterolemic patients and cholesterol-fed hypercholesterolemic rabbits, and determined the changes in the whole-plasma N-glycan profile by electrospray ionization mass spectrometry. We found that both the hypercholesterolemic patients and rabbits showed a dramatic change in their plasma glycan profile. Compared with healthy subjects, the hypercholesterolemic patients exhibited higher plasma levels of a cluster of high-mannose and complex/hybrid N-glycans (mainly including undecorated or sialylated glycans), whereas only a few fucosylated or fucosylated and sialylated N-glycans were increased. Additionally, cholesterol-fed hypercholesterolemic rabbits also displayed increased plasma levels of high-mannose in addition to high complex/hybrid N-glycan levels. The whole-plasma glycan profiles revealed that the plasma N-glycan levels were correlated with the plasma cholesterol levels, implying that N-glycans may be a target for treatment of hypercholesterolemia.  相似文献   

9.
Insect cells, like other eucaryotic cells, modify many of their proteins by N-glycosylation. However, the endogenous insect cell N-glycan processing machinery generally does not produce complex, terminally sialylated N-glycans such as those found in mammalian systems. This difference in the N-glycan processing pathways of insect cells and higher eucaryotes imposes a significant limitation on their use as hosts for baculovirus-mediated recombinant glycoprotein production. To address this problem, we previously isolated two transgenic insect cell lines that have mammalian beta1,4-galactosyltransferase or beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes. Unlike the parental insect cell line, both transgenic cell lines expressed the mammalian glycosyltransferases and were able to produce terminally galactosylated or sialylated N-glycans. The purpose of the present study was to investigate the structures of the N-glycans produced by these transgenic insect cell lines in further detail. Direct structural analyses revealed that the most extensively processed N-glycans produced by the transgenic insect cell lines were novel, monoantennary structures with elongation of only the alpha1,3 branch. This led to the hypothesis that the transgenic insect cell lines lacked adequate endogenous N-acetylglucosaminyltransferase II activity for biantennary N-glycan production. To test this hypothesis and further extend the N-glycan processing pathway in Sf9 cells, we produced a new transgenic line designed to constitutively express a more complete array of mammalian glycosyltransferases, including N-acetylglucosaminyltransferase II. This new transgenic insect cell line, designated SfSWT-1, has higher levels of five glycosyltransferase activities than the parental cells and supports baculovirus replication at normal levels. In addition, direct structural analyses showed that SfSWT-1 cells could produce biantennary, terminally sialylated N-glycans. Thus, this study provides new insight on the glycobiology of insect cells and describes a new transgenic insect cell line that will be widely useful for the production of more authentic recombinant glycoproteins by baculovirus expression vectors.  相似文献   

10.
11.
Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.Supported by USPHS, NINCDS grant NS-06294.  相似文献   

12.
Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.  相似文献   

13.
Regional Distribution of Kininase in Rat Brain   总被引:1,自引:1,他引:0  
Kininase activity, which inactivates kinins, was measured in seven regions of the rat brain (i.e., the cerebral cortex, cerebellum, striatum, midbrain, hippocampus, hypothalamus, medulla oblongata), and in the spinal cord with a bioassay method using bradykinin as the substrate. Specific kininase activities in the cerebellum and striatum were higher than those in the other five regions or the spinal cord. Angiotensin-converting enzyme activity, which was measured fluorometrically using Hip-His-Leu as substrate, showed high activity in the striatum and cerebellum. These findings suggest that the presence of high concentrations of peptidases plays a role in the degradation of kinins and/or other peptides in these areas.  相似文献   

14.
Abstract: Levels of the guanine nucleotide binding proteins G11α and Gqα, which produce receptor regulation of phosphoinositidase C., were measured immunologically in 13 regions of rat central nervous system. This was achieved by immunoblotting membranes from these regions with antisera (CQ series) that identify these two polypeptides equally, following separation of the membranes using sodium dodecyl sulphate-polyacrylamide gel electrophoresis conditions that can resolve Gqα and G11α. In all regions examined, Gqα was more highly expressed than G11α. Ratios of levels of Gqα to G11α varied between the regions from 5:1 to 2:1. Quantitative measurements of the levels of Gqα and G11α in each region were obtained by comparison with known amounts of purified liver Gqα and G11α and with E. coli expressed recombinant Gqα. Areas that expressed Gqα highly included olfactory bulb (930 ng/ mg of membrane protein), frontal cortex (700 ng/mg of membrane protein), parietal occipital cortex (670 ng/mg of membrane protein), caudate putamen (1,003 ng/mg of membrane protein), hippocampus (1,045 ng/mg of membrane protein), hypothalamus (790 ng/mg of membrane protein), and cerebellum (950 ng/mg of membrane protein). More modest levels were observed in thalamus (450 ng/mg of membrane protein), pituitary (480 ng/mg of membrane protein), optic chiasma (330 ng/mg of membrane protein), and spinal cord (350 ng/mg of membrane protein). Gna was more evenly expressed with values ranging from about 170 ng/mg of membrane protein in spinal cord and optic chiasma to close to 300 ng/mg of membrane protein in regions expressing high levels of Gqα. A third polypeptide could be identified by the CQ antisera in all brain regions. The possibility that this polypeptide is the α subunit of G14 is discussed.  相似文献   

15.
The regional brain distribution of metallothionein (MT), zinc, and copper in the brain was determined in nine anatomical regions (olfactory bulb, cortex, corpus striatum, hippocampus, thalamus plus hypothalamus, pons plus medulla oblongata, cerebellum, midbrain, and white matter) and was compared between two different strains of rat (Sprague-Dawley [SD] and Lewis). No significant difference was observed in the whole-brain MT level between the two strains (17.8 ± 3.4 μg/g in SD rats and 20.3 ± 2.3 μg/g in Lewis rats). In SD rats, however, MT was more highly expressed in the white matter than in the other regions studied. In contrast, MT concentration was highest in the cortex and lowest in the olfactory bulb in Lewis rats. The MT levels in the cortex, corpus striatum, hippocampus, and thalamus plus hypothalamus were significantly lower in SD rats than in Lewis rats. In both strains, the olfactory bulb contained markedly higher levels of both zinc and copper than the other regions (27.9 ±6.8 μg/g zinc in SD rats and 27.6 ± 6.9 μg/g zinc in Lewis rats, and 5.2 ± 1.5 μg/g copper in SD rats and 11.1 ± 4.8 μg/g copper in Lewis rats). The next high-est zinc levels were seen in the hippocampus, whereas the next highest copper levels were in the corpus striatum in both SD and Lewis rats. The high levels of zinc and copper in the olfactory bulb were not accompanied by concomitant high MT concentrations. These results indicate that the strain of rat as well as the anatomical brain region should be taken into account in MT and metal distribution studies. However, the highest concentrations of zinc and copper in olfactory bulb were common to both SD and Lewis rats. The discrepancy between MT and the metal levels in olfactory bulb suggests a role for other proteins in addition to MT in the homeostatic control of zinc and copper.  相似文献   

16.
Regional differences in the turnover of neuronal histamine in the rat brain   总被引:16,自引:0,他引:16  
The turnover rate of histamine (HA) and the half-life of neuronal HA were estimated in 9 regions of the rat brain following pargyline-induced accumulation of tele-methylhistamine (t-MH). The turnover rate was the highest in the hypothalamus (108.7 ng/g/hr). The striatum also showed a high turnover rate (80.2 ng/g/hr) despite much lower levels of HA and t-MH, as compared with the levels in the hypothalamus. The turnover rate was relatively high in the thalamus, cerebral cortex, amygdala and midbrain, but it was very low in the cerebellum. t-MH accumulation in the spinal cord was nil. The HA levels were reduced to various degrees (from nil to less than 40% of the control) by (S)-alpha-fluoromethylhistidine, depending on the regions studied. The neuronal HA content of each brain region was subsequently estimated, and the half-life of neuronal HA in each region was calculated. The half-life of neuronal HA was the shortest (7.7 min) in the striatum, while it was long (about 50 min) in the hypothalamus and thalamus. Half-life values of about 20 min were obtained in other regions. These results show the high levels of histaminergic activity in some parts of the telencephalon, thalamus and midbrain as well as the hypothalamus.  相似文献   

17.
Formin-1 is the founding member of a family of genes of emerging biological and medical importance that share specific domains of homology, allowing them to be classified together as the formin homology proteins. Although deficiency mutations in formin-1 lead to profound developmental defects in limb and kidney formation, similar deficiency mutations in more distantly related members of this family (diaphanous and cappuccino in Drosophila and BNI1 in yeast) have ostensibly unrelated phenotypes. Here we describe murine and human formin-2 (Fmn2), a gene which bears a high degree of similarity to formin-1 and cappuccino. The mouse gene, which encodes a putative 1567-amino-acid open reading frame and maps to mouse Chromosome 1, is expressed almost exclusively in the developing and mature central nervous system. Expression begins at embryonic day 9. 5 in the developing spinal cord and brain structures and continues in neonatal and adult brain structures including the olfactory bulb, cortex, thalamus, hypothalamus, hippocampus and cerebellum. Human formin-2 has a similar expression pattern.  相似文献   

18.
The voltage-gated potassium channels Kv3.1 and Kv3.3 are expressed in several distinct neuronal subpopulations in brain areas known to be involved in motor control such as cortex, basal ganglia and cerebellum. Depending on the lack of Kv3.1 or Kv3.3 channel subunits, mutant mice show different Kv3-null allele-dependent behavioral alterations that include constitutive hyperactivity, sleep loss, impaired motor performance and, in the case of the Kv3.1/Kv3.3 double mutant, also severe ataxia, tremor and myoclonus (Espinosa et al. 2001, J Neurosci 21, 6657-6665, Genes, Brain Behav 3, 90-100). The lack of Kv3.1 channel subunits is mainly responsible for the constitutively increased locomotor activity and for sleep loss, whereas the absence of Kv3.3 subunits affects cerebellar function, in particular Purkinje cell discharges and olivocerebellar system properties (McMahon et al. 2004, Eur J Neurosci 19, 3317-3327). Here, we describe two sensitive and non-invasive tests to reliably quantify normal and abnormal motor functions, and we apply these tests to characterize motor dysfunction in Kv3-mutant mice. In contrast to wildtype and Kv3.1-single mutants, Kv3.3-single mutants and Kv3 mutants lacking three and four Kv3 alleles display Kv3-null allele-dependent gait alterations. Although the Kv3-null allele-dependent gait changes correlate with reduced motor performance, they appear to not affect the training-induced improvement of motor performance. These findings suggest that altered cerebellar physiology in the absence of Kv3.3 channels is responsible for impaired motor task execution but not motor task learning.  相似文献   

19.
We investigated the ability of a baculovirus-insect cell system to produce sialylated glycoproteins. Despite the presence of enzymes for synthesizing complex-type N-glycans, the most frequent structure of insect N-glycan is the paucimannosidic type, Man(3)GlcNAc(2)(+/-Fuc). The reason for the overwhelming assembly of paucimannosidic N-glycans is not yet well understood. We hypothesized that this predominance might be due to insect-specific, Golgi-associated beta-N-acetylglucosaminidase (GlcNAcase)-mediated removal of N-acetylglucosamine residues from the precursor N-glycan, thereby preventing its galactosylation and terminal sialylation. As we expected, the suppression of intrinsic GlcNAcase activity with a specific inhibitor, 2-acetamido-1,2-dideoxynojirimycin, allowed the accumulation of sialylated glycoproteins in the supernatants of insect cell cultures after baculoviral infection. Our observation indicates that GlcNAcase-dependent depletion of N-acetylglucosamine residues from intermediate N-glycans is critical for the assembly of paucimannosidic N-glycans in insect cells and, more importantly, that insect cells (under specific conditions) retain the ability to construct sialylated N-glycans like those in mammalian cells.  相似文献   

20.
Chinese hamster ovary cells producing recombinant human interferon-gamma were cultivated for 500 h attached to macroporous microcarriers in a perfused, fluidized-bed bioreactor, reaching a maximum cell density in excess of 3 x 10(7) cells (mL microcarrier)-1 at a specific growth rate (mu) of 0.010 h-1. During establishment of the culture, the N-glycosylation of secreted recombinant IFN-gamma was monitored by capillary electrophoresis of intact IFN-gamma proteins and by HPLC analysis of released N-glycans. Rapid analysis of IFN-gamma by micellar electrokinetic capillary chromatography resolved the three glycosylation site occupancy variants of recombinant IFN-gamma (two Asn sites occupied, one Asn site occupied and nonglycosylated) in under 10 min per sample; the relative proportions of these variants remained constant during culture. Analysis of IFN-gamma by capillary isoelectric focusing resolved at least 11 differently sialylated glycoforms over a pI range of 3.4 to 6.4, enabling rapid quantitation of this important source of microheterogeneity. During perfusion culture the relative proportion of acidic IFN-gamma proteins increased after 210 h of culture, indicative of an increase in N-glycan sialylation. This was confirmed by cation-exchange HPLC analysis of released, fluorophore-labeled N-glycans, which showed an increase in the proportion of tri- and tetrasialylated N-glycans associated with IFN-gamma during culture, with a concomitant decrease in the proportion of monosialylated and neutral N-glycans. Comparative analyses of IFN-gamma produced by CHO cells in stirred-tank culture showed that N-glycan sialylation was stable until late in culture, when a decline in sialylation coincided with the onset of cell death and lysis. This study demonstrates that different modes of capillary electrophoresis can be employed to rapidly and quantitatively monitor the main sources of glycoprotein variation, and that the culture system and operation may influence the glycosylation of a recombinant glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号